സാമാന്തരികം

testwiki സംരംഭത്തിൽ നിന്ന്
15:39, 5 നവംബർ 2024-നു ഉണ്ടായിരുന്ന രൂപം സൃഷ്ടിച്ചത്:- 2402:3a80:4482:fe2:0:2f:85b0:f101 (സംവാദം)
(മാറ്റം) ←പഴയ രൂപം | ഇപ്പോഴുള്ള രൂപം (മാറ്റം) | പുതിയ രൂപം→ (മാറ്റം)
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

ഫലകം:PU ഫലകം:Infobox Polygon

എതിർവശങ്ങൾ സമാന്തരങ്ങളും തുല്യങ്ങളും എതിർകോണുകൾ തുല്യങ്ങളും ആയ ചതുർഭുജം ആണ് സാമാന്തരികം. ഇതിന്റെ വികർണ്ണങ്ങൾ സമഭാഗം ചെയ്യുന്നു. ചതുരം, സമചതുരം, സമഭുജസാമാന്തരികം എന്നിവ സാമാന്തരികങ്ങളാണ്‌.sanjay

ചില സാമാന്തരികങ്ങൾ

Quadrilaterals by symmetry
  • ദീർഘസാമാന്തരികം (Rhomboid): എതിർവശങ്ങൾ സമാന്തരം.[1]
  • ദീർഘചതുരം (Rectangle): 4കോണുകളും മട്ടകോണുകളാണ്. എതിർവശങ്ങൾ തുല്യവും സമാന്തരങ്ങളും വികർണ്ണങ്ങൾ സമഭാഗം ചെയ്യുന്നവയും ആണ്.
  • സമഭുജസാമാന്തരികം (Rhombus): നാലുവശങ്ങളും തുല്യം. അതായത് എതിർവശങ്ങൾ തുല്യവും സമാന്തരങ്ങളും എതിർകോണുകൾ തുല്യങ്ങളും ആണ്. വികർണ്ണങ്ങൾ ലംബസമഭാഗം ചെയ്യുന്നു.
  • സമചതുരം (Square): 4വശങ്ങളും 4കോണുകളും തുല്യമായതും ഓരോ കോണും 90ഡിഗ്രി ആയതും ആയ ചതുർഭുജമാണ് സമചതുരം. എതിർവശങ്ങൾ സമാന്തരങ്ങളും വികർണ്ണങ്ങൾ പരസ്പരം ലംബസമഭാഗം ചെയ്യുന്നവയും ആണ്.

വിസ്തീർണ്ണം കാണുന്ന വിധം

ചതുർഭുജത്തിന്റെ വിസ്തീർണ്ണം കാണുന്നതിനായി ഉപയോഗിക്കുന്ന സൂത്രവാക്യങ്ങൾ സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കാണുന്നതിനും ഉപയോഗിക്കാം.

ഖണ്ഡന രീതി

ജ്യാമിതീയ രൂപങ്ങളെ വിവിധ ഭാഗങ്ങളായി മുറിച്ച്, ആ ഭാഗങ്ങളുടെ വിസ്തീർണ്ണങ്ങൾ തമ്മിൽ കൂട്ടി മൂലരൂപത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുന്ന രീതിയായ ഖണ്ഡന രീതി ഉപയോഗിച്ച് സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കാണാനുള്ള സൂത്രവാക്യം.

സമവിസ്തീർണ്ണ രൂപങ്ങൾ.

ചിത്രത്തിൽ കാണുന്നത് പോലെ സാമാന്തരികത്തിനെ ഒരു ലംബകവും മട്ടത്രികോണവുമായി മുറിക്കാം. ഇതിനെ കൂട്ടിയോജിപ്പിച്ച് ചതുരം നിർമ്മിക്കാം. ഇത്തരത്തിൽ സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കണക്കാക്കാം. സാമാന്തരികത്തിന്റെ ഉയരം ഫലകം:Mvar ഉം പാദവശത്തിന്റേയോ മുകൾവശത്തിന്റേയോ നീളം ഫലകം:Mvar യും ആണെങ്കിൽ വിസ്തീർണ്ണം:

A=bh

വശങ്ങളും കോണളവും ഉപയോഗിച്ച്

വശങ്ങളുടെ നീളം B , C അവയ്ക്കിടയിലെ കോണിന്റെ അളവ് θ ആയ സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം

K=BCsinθ.[2]


അവലംബം

ഫലകം:RL ഫലകം:Geometry-stub

"https://ml.wiki.beta.math.wmflabs.org/w/index.php?title=സാമാന്തരികം&oldid=325" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്