ക്വാണ്ടം കമ്പ്യൂട്ടിങ്

ക്വാണ്ടം ബലതന്ത്രത്തിലെ അടിസ്ഥാന ആശയങ്ങളായ ക്വാണ്ടം വിശിഷ്ടസ്ഥിതി (super position), ക്വാണ്ടം കെട്ടുപിണച്ചിൽ (quantum entanglement) തുടങ്ങിയവയെ അടിസ്ഥാനപ്പെടുത്തി പ്രവർത്തിയ്ക്കുന്ന കമ്പ്യൂട്ടിങ് ആണ് ക്വാണ്ടം കമ്പ്യൂട്ടിങ്.[1] ഇത്തരം കമ്പ്യൂട്ടിങ് ചെയ്യാൻ കഴിവുള്ള ഒരു കംപ്യൂട്ടറിനെ ക്വാണ്ടം കമ്പ്യൂട്ടർ എന്ന് വിളിയ്ക്കുന്നു. ദ്വയാങ്ക അവസ്ഥകളുള്ള ട്രാന്സിസ്റ്ററുകളെ അടിസ്ഥാനമാക്കി പ്രവർത്തിയ്ക്കുന്ന സാധാരണ ഡിജിറ്റൽ കംപ്യൂട്ടറുകളെക്കാൾ വളരെ വ്യത്യസ്തമായാണ് ഇത് പ്രവർത്തിയ്ക്കുന്നത്. സാധാരണ ഡിജിറ്റൽ കംപ്യൂട്ടറുകളിൽ രണ്ടു സ്റ്റേറ്റുകൾ (0 അല്ലെങ്കിൽ 1) മാത്രമുള്ള ബിറ്റുകളിലേക്കാണ് വിവരം എൻകോഡ് ചെയ്യപ്പെടുന്നത്. എന്നാൽ ക്വാണ്ടം കമ്പ്യൂട്ടറിൽ ഇത് ക്യൂബിറ്റുകൾ എന്നറിയപ്പെടുന്ന പ്രത്യേകതരം ബിറ്റുകളിലാണ് എൻകോഡ് ചെയ്യപ്പെടുന്നത്. ഇത്തരം ബിറ്റുകളിൽ വിവരം വ്യത്യസ്ത ക്വാണ്ടം അവസ്ഥകളുടെ ഒരു വിശിഷ്ടസ്ഥിതിയിലാണ് ഉണ്ടാവുക. ക്വാണ്ടം കമ്പ്യൂട്ടറിന്റെ സൈദ്ധാന്തിക മാതൃകയാണ് ക്വാണ്ടം ട്യൂറിംഗ് യന്ത്രം.
പോൾ ബെനിയോഫ്[2], യൂറി മാനിൻ എന്നിവർ 1980 ലും[3] റിച്ചാർഡ് ഫെയ്ൻമാൻ 1982 ലും,[4] ഡേവിഡ് ഡോയ്ഷ് 1985 ലും[5] ചെയ്ത ഗവേഷണങ്ങളാണ് ക്വാണ്ടം കമ്പ്യൂട്ടിങിന് അടിത്തറയിട്ടത്. 1968 ൽ ക്വാണ്ടം സ്ഥലകാലം എന്ന ആശയത്തിനു വേണ്ടി ക്വാണ്ടം തിരിച്ചിൽ (quantum spin) അടിസ്ഥാനപ്പെടുത്തിയുള്ള ക്വാണ്ടം കമ്പ്യൂട്ടർ എന്ന ആശയം ഉപയോഗിച്ചിരുന്നു.[6]
2018 ലും ക്വാണ്ടം കംപ്യൂട്ടറുകളുടെ രൂപീകരണം ശൈശവാവസ്ഥയിൽ തന്നെയാണ്. ഏതാനും ക്യൂബിറ്റുകൾ മാത്രം ഉപയോഗിച്ചുള്ള ക്വാണ്ടം കംപ്യൂട്ടറുകളേ ഇതുവരെ നിർമ്മിയ്ക്കപ്പെട്ടിട്ടുള്ളൂ.[7] പല ദേശീയ സർക്കാരുകളും സൈനിക ഏജൻസികളും ഇതിന്റെ ഗവേഷണത്തിൽ വ്യാപൃതരായിട്ടുണ്ട്. സൈനികേതരമായ ആവശ്യങ്ങൾക്ക് പുറമെ ക്രിപ്റ്റോ അനാലിസിസ് പോലെയുള്ള ദേശീയ സുരക്ഷയ്ക്കുള്ള സങ്കേതങ്ങൾക്കു വേണ്ടിയും ഇത് ഉപയോഗിയ്ക്കാം എന്ന് തെളിയിക്കപ്പെട്ടിട്ടുണ്ട്.[8] ഐ.ബി.എം ക്വാണ്ടം എക്സ്പീരിയൻസ് എന്ന പരിപാടിയിലൂടെ 20 ക്യൂബിറ്റുകൾ ഉള്ള ഒരു ചെറിയ ക്വാണ്ടം കമ്പ്യൂട്ടർ ഗവേഷങ്ങൾക്കായി ലഭ്യമാണ്. ഡി-വേവ് എന്ന കമ്പനി ക്വാണ്ടം അനീലിങ് (quantum annealing) എന്ന പ്രക്രിയ വഴി പ്രവർത്തിയ്ക്കുന്ന ഒരു ക്വാണ്ടം കമ്പ്യൂട്ടർ ഡിസൈൻ ചെയ്തിട്ടുണ്ട്.[9]
ശരിയായ രീതിയിൽ നിർമ്മിയ്ക്കപ്പെട്ട ഒരു ക്വാണ്ടം കമ്പ്യൂട്ടർ ചില പ്രത്യേക അൽഗോരിതങ്ങൾ സാധാരണ കംപ്യൂട്ടറുകളെക്കാൾ വേഗതയിൽ ഓടിയ്ക്കും എന്ന് സൈദ്ധാന്തികമായി തെളിയിയ്ക്കപ്പെട്ടിട്ടുണ്ട്. ഉദാഹരണത്തിന് ഒരു സംഖ്യയെ അതിന്റെ ഘടകങ്ങളായി വിഭജിയ്ക്കുന്ന പ്രക്രിയ ഷോറിന്റെ അൽഗോരിതം (shor's algorithm) എന്ന ക്വാണ്ടം അൽഗോരിതം വഴി വളരെ വേഗത്തിൽ ഓടിയ്ക്കാവുന്നതാണ്. സാധാരണ അൽഗോരിതത്തെ അപേക്ഷിച്ചു ഇതിന്റെ സമയ സങ്കീർണ്ണത (time complexity) വളരെ മെച്ചമാണ്. സംഖ്യകളെ ഘടകങ്ങളാക്കുന്ന അൽഗോരിതം ഉപയോഗിച്ചാണ് ഇന്നു കാണുന്ന ഒരുവിധം എൻക്രിപ്ഷൻ സങ്കേതങ്ങൾ (പ്രത്യേകിച്ചും ആർ.എസ്.എ എന്ന എൻക്രിപ്ഷൻ സങ്കേതം) ഡിസൈൻ ചെയ്യപ്പെട്ടിട്ടുള്ളത്. അതിനാൽ ഒരു ക്വാണ്ടം കമ്പ്യൂട്ടർ ഇന്നത്തെ എൻക്രിപ്ഷൻ വ്യവസ്ഥകളെ തകിടം മറിയ്ക്കുമെന്ന് പലരും കരുതുന്നു.[10]
അടിസ്ഥാനവിവരങ്ങൾ
ഒരു സാധാരണ കമ്പ്യൂട്ടറിന്റെ മെമ്മറി ബിറ്റുകൾ കൊണ്ടാണ് ഉണ്ടാക്കിയിട്ടുള്ളത്. ഒരു ബിറ്റിന് 1, 0 ഇവയിൽ ഏതെങ്കിലും ഒരു വില മാത്രമാണ് ഒരേ സമയം എടുക്കാൻ സാധിയ്ക്കുന്നത്. ഒരു ക്വാണ്ടം കമ്പ്യൂട്ടർ ക്യൂബിറ്റ് ഉപയോഗിച്ചാണ് ഉണ്ടാക്കിയിട്ടുള്ളത്. ഒരു ക്യൂബിറ്റിന് 1, 0 എന്നീ അവസ്ഥകളും അല്ലെങ്കിൽ ഇവയുടെ ഒരു ക്വാണ്ടം വിശിഷ്ടസ്ഥിതിയിലുള്ള അവസ്ഥയും എടുക്കാൻ സാധിയ്ക്കും;[11]ഫലകം:Rp രണ്ടു ക്യൂബിറ്റുകൾ ഉണ്ടെങ്കിൽ അവയ്ക്കു 00, 01, 10, 11 എന്നീ 4 ക്വാണ്ടം അവസ്ഥകളുടെ വിശിഷ്ടസ്ഥിതികൾ എടുക്കാൻ സാധിയ്ക്കും,ഫലകം:Rp മൂന്നെണ്ണം ഉണ്ടെങ്കിൽ 000, 001, 010, 011, 100, 101, 110, 111 എന്നീ 8 അവസ്ഥകളുടെ വിശിഷ്ടസ്ഥിതികൾ എടുക്കാൻ സാധിയ്ക്കും. അതായത് ക്യൂബിറ്റുകൾ ഉള്ള ഒരു ക്വാണ്ടം കംപ്യൂട്ടറിന് സ്റ്റേറ്റുകളുടെ വിശിഷ്ടസ്ഥിതികൾ ഒരേ സമയം എടുക്കാൻ സാധിയ്ക്കുംഫലകം:Rp (ഒരു സാധാരണ കമ്പ്യൂട്ടറിൽ ഒരേ സമയം അവസ്ഥകളിലെ ഏതെങ്കിലും ഒരു അവസ്ഥ മാത്രമേ സ്വീകരിയ്ക്കാൻ സാധിയ്ക്കൂ എന്നോർക്കുക).
ക്വാണ്ടം ഗേറ്റുകൾ എന്നറിയപ്പെടുന്ന പ്രത്യേക സർക്യൂട്ടുകൾ ഉപയോഗിച്ചാണ് വിശിഷ്ടസ്ഥിതിയിൽ ഉള്ള ക്യൂബിറ്റുകളിൽ പ്രവർത്തിയ്ക്കുന്നത്. ഇങ്ങനെ വിശിഷ്ടസ്ഥിതിയിൽ ഇരിയ്ക്കുന്ന ഒരു കൂട്ടം ക്യൂബിറ്റുകളെ ക്വാണ്ടം അൽഗോരിതം എന്നറിയപ്പെടുന്ന ക്വാണ്ടം ഗേറ്റുകളുടെ ഒരു അനുക്രമം (sequence) ഉപയോഗിച്ച് പല പരിവർത്തനങ്ങളും വരുത്തുന്നു. സാധാരണ കമ്പ്യൂട്ടറിൽ സെൻട്രൽ പ്രോസസ്സിംഗ് യൂണിറ്റിലെ ഒരു രജിസ്റ്ററിലെ വിലകളെ മാറ്റുന്നതിന് തുല്യമാണിത്. ഇത്തരം പ്രവർത്തനത്തിനു ശേഷം ഒരു ക്വാണ്ടം അളക്കൽ വഴി ഉത്തരം പുറത്തെടുക്കുന്നു. ഈ അളക്കൽ നടത്തുമ്പോൾ വിശിഷ്ടസ്ഥിതിയിൽ ഉള്ള ക്യൂബിറ്റുകൾ നേരത്തെ കണ്ട സാധാരണ വിലകളിൽ ഒന്നിലേയ്ക്ക് മാറുന്നു. ഈ വിലയാണ് പുറത്തു കാണാൻ സാധിയ്ക്കുക.അതായത് ഈ സമയത്ത് ക്യൂബിറ്റിന്റെ വില സാധാരണ പോലെ 0 ഓ 1 ഓ ആയിരിയ്ക്കും. അതായത് ക്യൂബിറ്റുകളിൽ പ്രവർത്തിയ്ക്കുന്ന ഒരു ക്വാണ്ടം അൽഗോരിതത്തിന്റെ ഔട്ട്പുട്ട് എപ്പോഴും ബിറ്റ് ഉള്ള ഒരു സാധാരണ നമ്പർ ആയിരിയ്ക്കും ഇനി ക്വാണ്ടം അളക്കൽ നടത്തിയില്ലെങ്കിൽ ആ ബിറ്റുകൾ വിശിഷ്ടസ്ഥിതിയിൽ തന്നെ തുടരും. ഈ അവസ്ഥയിൽ നമുക്ക് പുറത്തേയ്ക്കു വിവരം ഒന്നും തന്നെ കിട്ടില്ല. വിശിഷ്ടസ്ഥിതിയിൽ നിൽക്കുന്ന ഒരു ക്യൂബിറ്റിൽ ക്വാണ്ടം അളക്കൽ നടത്തിയാൽ അത് ക്യൂബിറ്റിന്റെ ഏതു സാധാരണ അവസ്ഥയിലേയ്ക്ക് മാറും എന്നത് എപ്പോഴും ഒരു സംഭാവ്യത അനുസരിച്ചു ഇരിയ്ക്കും. ഇത് ക്വാണ്ടം ബലതന്ത്രത്തിന്റെ ഒരു അടിസ്ഥാന തത്ത്വം ആണ്. അതിനാൽ ക്യൂബിറ്റുകളുടെ ഒരു സംയുക്ത വിശിഷ്ടസ്ഥിതിയിൽ നിന്ന് ക്വാണ്ടം അളക്കൽ നടത്തിയാലും അതിന്റെ ഔട്ട്പുട്ട് വിലകളിൽ ഏതെങ്കിലും ഒന്ന് ആകുന്നത് ഒരു സംഭവ്യത വെച്ച് തന്നെ ആണ്. അതിനാൽ ക്വാണ്ടം അൽഗോരിതങ്ങൾ പൊതുവേ സംഭാവ്യതാ അൽഗോരിതങ്ങൾ ആണെന്ന് പറയുന്നു.[12]
ഉദാഹരണത്തിന് ഒരു ക്വാണ്ടം കംപ്യൂട്ടറിലെ ക്യൂബിറ്റുകൾ ക്വാണ്ടം കണികകളുടെ തിരിച്ചിൽ എന്ന പ്രഭാവം ഉപയോഗിച്ച് ഉണ്ടാക്കിയെടുക്കാം. ക്വാണ്ടം കാണികളുടെ തിരിച്ചിൽ "down", "up" എന്നീ രണ്ടു പേരുകൾ വെച്ചാണ് വിശേഷിപ്പിയ്ക്കുന്നത് ഇതിനെ ഉം , എന്നോ ഉം .
ഇവ കൂടി കാണുക
- ക്യൂബിറ്റ്
- ക്വാണ്ടം വിശിഷ്ടസ്ഥിതി
- ക്വാണ്ടം കെട്ടുപിണച്ചിൽ
- ക്വാണ്ടം തിരിച്ചിൽ
- ക്വാണ്ടം അളക്കൽ
- ക്വാണ്ടം അൽഗോരിതം
- ഷോറിന്റെ അൽഗോരിതം
- സമയ സങ്കീർണ്ണത
അവലംബം
- ↑ ഫലകം:Cite journal
- ↑ ഫലകം:Cite journal
- ↑ ഫലകം:Cite book
- ↑ ഫലകം:Cite journal
- ↑ ഫലകം:Cite journal
- ↑ ഫലകം:Cite book
- ↑ ഫലകം:Cite web
- ↑ Quantum Information Science and Technology Roadmap ഫലകം:Webarchive for a sense of where the research is heading.
- ↑ ഫലകം:Cite web
- ↑ ഫലകം:Cite web
- ↑ ഫലകം:Cite book
- ↑ ഫലകം:Cite web