കോശി-ഷ്വാർസ്‌ അസമവാക്യം

testwiki സംരംഭത്തിൽ നിന്ന്
08:45, 15 സെപ്റ്റംബർ 2022-നു ഉണ്ടായിരുന്ന രൂപം സൃഷ്ടിച്ചത്:- imported>InternetArchiveBot (Bluelink 1 book for പരിശോധനായോഗ്യത (20220914)) #IABot (v2.0.9.2) (GreenC bot)
(മാറ്റം) ←പഴയ രൂപം | ഇപ്പോഴുള്ള രൂപം (മാറ്റം) | പുതിയ രൂപം→ (മാറ്റം)
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

രേഖാഗണിതം, സാധ്യതാതന്ത്രം ആദിയായ ഗണിത മേഖലകളിൽ പ്രമുഖമായി പ്രയോഗിക്കപ്പെടുന്ന ഒരു തത്വമാണ് കോശി-ഷ്വാർസ്‌ അസമവാക്യം. ഗണിതത്തിലെ തന്നെ ഏറ്റവും പ്രധാനപ്പെട്ടതെന്ന് കരുതപ്പെടുന്ന ഒരു അസമവാക്യമാണിത്.[1]

1821ൽ അഗസ്റ്റിൻ-ലൂയിസ് കോശിയാണ് സങ്കലനങ്ങളുടെ ഇടയിൽ ഈ അസമവാക്യത്തിന്റെ നിലനിൽപ്പ് തെളിയിച്ചത്. 1859ൽ വിക്ടർ ബന്യകോവ്‌സ്‌കിയാണ് സമാകലനങ്ങളിലെ കോശി അസമവാക്യം തെളിയിച്ചത്. ഇതേ തെളിവ് 1888ൽ ഹെർമൻ ഷ്വാർസ്‌ സ്വതന്ത്രമായി കണ്ടെത്തി.[1]

അസമത്വത്തിന്റെസാമാന്യ രൂപം

ഒരു ആന്തരിക ഗൗണ്യ ക്ഷേത്രത്തിൽ (inner product space) ഉൾപ്പെടുന്ന u, v എന്ന എല്ലാ സാദിശവസ്തുക്കളും (vectors) ഇപ്രകാരം ബന്ധപ്പെട്ടു കിടക്കുന്നു:

|𝐮,𝐯|2𝐮,𝐮𝐯,𝐯,

ഇവിടെ , എന്നത് കൊണ്ട് ഒരു ആന്തരികഗുണനമാണുദ്ദേശിക്കുന്നത്, ഉദാഹരണത്തിന്, സാദിശവസ്തുക്കൾ തമ്മിലുള്ള ബൈന്ദവ ഗുണനം (dot product). പ്രസ്തുത സമവാക്യത്തെ ഇങ്ങനെയും എഴുതാവുന്നതാണ്.

|𝐮,𝐯|𝐮𝐯.

ഇവിടെ ഒരു സമവാക്യം ഉണ്ടാകുന്നത് u, v എന്ന സാദിശവസ്തുക്കൾ സമാന്തരമാണെങ്കിൽ മാത്രമാണ്.[2][3][4]

അവലംബം

ഫലകം:RL