കോശി-ഷ്വാർസ് അസമവാക്യം
രേഖാഗണിതം, സാധ്യതാതന്ത്രം ആദിയായ ഗണിത മേഖലകളിൽ പ്രമുഖമായി പ്രയോഗിക്കപ്പെടുന്ന ഒരു തത്വമാണ് കോശി-ഷ്വാർസ് അസമവാക്യം. ഗണിതത്തിലെ തന്നെ ഏറ്റവും പ്രധാനപ്പെട്ടതെന്ന് കരുതപ്പെടുന്ന ഒരു അസമവാക്യമാണിത്.[1]
1821ൽ അഗസ്റ്റിൻ-ലൂയിസ് കോശിയാണ് സങ്കലനങ്ങളുടെ ഇടയിൽ ഈ അസമവാക്യത്തിന്റെ നിലനിൽപ്പ് തെളിയിച്ചത്. 1859ൽ വിക്ടർ ബന്യകോവ്സ്കിയാണ് സമാകലനങ്ങളിലെ കോശി അസമവാക്യം തെളിയിച്ചത്. ഇതേ തെളിവ് 1888ൽ ഹെർമൻ ഷ്വാർസ് സ്വതന്ത്രമായി കണ്ടെത്തി.[1]
അസമത്വത്തിന്റെസാമാന്യ രൂപം
ഒരു ആന്തരിക ഗൗണ്യ ക്ഷേത്രത്തിൽ (inner product space) ഉൾപ്പെടുന്ന u, v എന്ന എല്ലാ സാദിശവസ്തുക്കളും (vectors) ഇപ്രകാരം ബന്ധപ്പെട്ടു കിടക്കുന്നു:
ഇവിടെ എന്നത് കൊണ്ട് ഒരു ആന്തരികഗുണനമാണുദ്ദേശിക്കുന്നത്, ഉദാഹരണത്തിന്, സാദിശവസ്തുക്കൾ തമ്മിലുള്ള ബൈന്ദവ ഗുണനം (dot product). പ്രസ്തുത സമവാക്യത്തെ ഇങ്ങനെയും എഴുതാവുന്നതാണ്.
ഇവിടെ ഒരു സമവാക്യം ഉണ്ടാകുന്നത് u, v എന്ന സാദിശവസ്തുക്കൾ സമാന്തരമാണെങ്കിൽ മാത്രമാണ്.[2][3][4]