പെട്രോളിയം

testwiki സംരംഭത്തിൽ നിന്ന്
19:12, 27 നവംബർ 2024-നു ഉണ്ടായിരുന്ന രൂപം സൃഷ്ടിച്ചത്:- imported>InternetArchiveBot (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5)
(മാറ്റം) ←പഴയ രൂപം | ഇപ്പോഴുള്ള രൂപം (മാറ്റം) | പുതിയ രൂപം→ (മാറ്റം)
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

ഫലകം:Prettyurl

Pumpjack pumping an oil well near Lubbock, Texas

ഭൂമിയിലെ പാറക്കൂട്ടങ്ങൾക്കിടയിൽ പ്രകൃത്യാ കണ്ടുവരുന്നതും കത്താൻ കഴിവുള്ളതുമായ ദ്രാവകമാണ് പെട്രോളിയം(ഇംഗ്ലീഷ്: Petroleum, ലാറ്റിൻ: petroleum, < ഗ്രീക്ക്: πετρέλαιον). വിവിധ തരത്തിലുള്ള ഹൈഡ്രോകാർബണുകളുടെ സങ്കീർണ്ണമായ മിശ്രിതമാണ്‌ ഇവ, കൂടെ മറ്റുള്ള ജൈവസം‌യുക്തങ്ങളും കാണപ്പെടുന്നു. പെട്രോളിയത്തെ 'സ്വാഭാവിക എണ്ണ' (crude oil) എന്നും പറയാറുണ്ട്.1546 ൽ ജർമൻ ശാസ്ത്രജ്ഞനായ ജോർജ് ബൗർ ആണ്‌ പെട്രോളിയം എന്ന പദം ആദ്യമായി ഉപയോഗിച്ചത്.

ചേരുവ

പെട്രോളിയം; കൂടുതൽ ക്ലിപ്തമായ രീതിയിൽ പറഞ്ഞാൽ സ്വാഭാവിക എണ്ണ മാത്രമാണ് പെട്രോളിയത്തിലടങ്ങിയിരിക്കുന്നത്. എന്നാൽ സാധാരണഗതിയിൽ പെട്രോളിയത്തിൽ സ്വാഭാവിക എണ്ണയും പ്രകൃതിവാതകവും അടങ്ങിയിരിക്കുന്ന രീതിയിലായിരിക്കും. സ്വാഭാവിക എണ്ണയും (ക്രൂഡ് ഓയിൽ) പ്രകൃതിവാതകവും ഹൈഡ്രോകാർബൺ മിശ്രിതങ്ങളാണ്. ലളിത ഹൈഡ്രോകാർബണുകളായ മീഥെയ്ൻ, എഥെയ്ൻ, പ്രൊപെയ്ൻ, ബ്യൂട്ടെയ്ൻ എന്നിവ ഭൗമോപരിതല മർദ്ദത്തിലും താപനിലയിലും വാതകരൂപത്തിലാണെങ്കിൽ, പെന്റെയ്ൻ മുതലങ്ങോട് ഭാരം കൂടിയ ഹൈഡ്രോകാർബണുകൾ ദ്രാവകരൂപത്തിലും ഖരരൂപത്തിലുമായിരിക്കും. എന്നാൽ ഭൂമിക്കടിയിൽ അവയുടെ സ്ഥാനത്തിന്റെ ചുറ്റുപാടനുസരിച്ച് അവയുടെ പദാർത്ഥനിലയിൽ മാറ്റം വരുന്നതാണ്.[1]

ഒരു എണ്ണക്കിണറിന്റെ ഉല്പാദനത്തിന്റെ ഗണ്യഭാഗവും സ്വാഭാവിക എണ്ണയായിരിക്കും, ഇതിൽ അല്പം പ്രകൃതിവാതകം ലയിച്ചു ചേർന്നിരിക്കും. ഭൗമോപരിതലത്തിലെ മർദ്ദം ഭൂമിക്കടിയിലേതിനേക്കാൾ കുറഞ്ഞ രീതിയിലായതിനാൽ ലയിച്ചു ചേർന്നിരിക്കുന്ന ഹൈഡ്രോകാർബൺ വാതകങ്ങൾ മിശ്രിതത്തിൽ നിന്ന് പുറത്തു കടന്ന് വാതകരൂപം പ്രാപിക്കും. എണ്ണക്കിണറിൽ നിന്നും ലഭിക്കുന്ന വാതകങ്ങളിൽ കൂടുതലും പ്രകൃതിവാതകമായിരിക്കുമെങ്കിലും ഉപരിതലത്തേക്കാൾ താപനിലയും മർദ്ദവും ഭൗമാന്തർഭാഗത്ത് കൂടുതലായതിനാൽ പെന്റെയ്ൻ, ഹെക്സെയ്ൻ, ഹെപ്റ്റെയ്ൻ എന്നിവ വാതകരൂപത്തിൽ ലഭിക്കുന്ന വാതകങ്ങളിൽ അടങ്ങിയിരിക്കും. ഭൗമോപരിതല സാഹചര്യത്തിൽ ഇവ ഘനീഭവിക്കും, ഇവയെ കണ്ടൻസേറ്റ് (condensate) എന്നു വിളിക്കുന്നു. ഇത് കാഴ്ചയിൽ ഗാസോലീനെ (പെട്രോളിനെ) പോലെയായിരിക്കും കാണപ്പെടുക.


അടങ്ങിയിരിക്കുന്ന ഹൈഡ്രോകാർബണുകളുടെ അളവിൽ വലിയ മാറ്റമുണ്ടാകാറുണ്ട്, നേർമയായ എണ്ണയിൽ ഭാരത്തിന്റെ 97% വും ഘന എണ്ണയിലും ബിറ്റുമിനിലും ഭാരത്തിന്റെ 50% വരെ ഹൈഡ്രോകാർബണുകൾ കാണപ്പെടുന്നു.

പെട്രോളിയത്തിൽ അടങ്ങിയിട്ടുള്ള ഹൈഡ്രോകാർബണുകൾ കൂടുതലായും ആൽക്കെയ്നുകൾ, സൈക്ലോആൽക്കെയ്നുകൾ, ആരോമാറ്റിക്ക് ഹൈഡ്രോകാർബണുകൾ എന്നിവയാണ്‌, മറ്റുള്ള ജൈവസം‌യുക്തങ്ങളിൽ കൂടുതലായും നൈട്രജൻ, ഓക്സിജൻ, സൾഫർ എന്നിവയും നേരിയതോതിൽ ഇരുമ്പ്, നിക്കൽ, ചെമ്പ്, വനേഡിയം തുടങ്ങിയ ലോഹങ്ങളും കാണപ്പെടുന്നു. തന്മാത്രകളുടെ കൃത്യമായ അനുപാതം വളരെ വ്യത്യാസപ്പെടാറുണ്ട്, അടങ്ങിയിരിക്കുന്ന രാസമൂലകങ്ങളുടെ ഏകദേശ അനുപാതം.

കാർബൺ 83-87%
ഹൈഡ്രജൻ 10-14%
നൈട്രജൻ 0.1-2%
ഓക്സിജൻ 0.1-1.5%
സൾഫർ 0.5-6%
ലോഹങ്ങൾ <1000 ppm

നാല് വ്യത്യസ്ത തരത്തിൽപ്പെട്ട ഹൈഡ്രോകാർബൺ തൻമാത്രകളാണ് സ്വാഭാവിക എണ്ണയിൽ കാണപ്പെടുന്നു. ഒരോ മേഖലയിൽ നിന്നും ലഭിക്കുന്ന എണ്ണയിൽ ഇവയുടെ അനുപാതത്തിൽ മാറ്റമുണ്ടാകും ഇത് എണ്ണയുടെ ഗുണങ്ങളെ നിശ്ചയിക്കുന്നു.[1]

ഭാരത്തിനനുസരിച്ചുള്ള ചേരുവ
ഹൈഡ്രോകാർബൺ ശരാശരി കാണപ്പെടാവുന്ന
പരിധി
Paraffins 30% 15 to 60%
Naphthenes 49% 30 to 60%
Aromatics 15% 3 to 30%
Asphaltics 6% remainder

അടങ്ങിയിരിക്കുന്ന ഘടകങ്ങൾക്കനുസരിച്ച് സ്വാഭാവിക എണ്ണയ്ക്ക് കാഴ്ചയിൽ വ്യത്യാസമുണ്ടാകാറുണ്ട്. സാധാരണയായി കറുപ്പ് അല്ലെങ്കിൽ കടും തവിട്ട് നിറമാണിവയ്ക്ക് (മഞ്ഞ കലർന്ന അല്ലെങ്കിൽ പച്ച കലർന്ന നിറവും ഉണ്ടാകും). പ്രകൃതിവാതകവും ഇവയുടെ നിക്ഷേപങ്ങളിൽ കാണപ്പെടുന്നു, മുകൾഭാഗം വാതകത്തിന്റെ നേരിയ പാളിയുണ്ടാകും, കൂടുതൽ ഘനത്വമുള്ള ഒരായ ജലം പെട്രോളിയത്തിന്‌ താഴെയായി കാണപ്പെടാറുണ്ട്. മണലുമായി കൂടിച്ചേർന്ന് അർദ്ധഘരരൂപത്തിലും ഇവ കണ്ടുവരാറുണ്ട്, കാനഡയിലെ അതബാസ്ക എണ്ണ മണലുകൾ ഇതിന്‌ ഉദാഹരണമാണ്‌, ഇത്തരത്തിലുള്ളവയെ സ്വാഭാവിക ബിറ്റുമിൻ (crude bitumin) എന്ന് പറയുന്നു.

പെട്രോളിയം ഏറ്റവും കൂടുതൽ ഉപയോഗിക്കപ്പെടുന്നത് പ്രധാന ഊർജ സ്രോതസ്സായ ഗാസോലീൻ (പെട്രോൾ) ഉല്പാദിപ്പിക്കുവാനാണ്‌.[2] പെട്രോളിയത്തിലടങ്ങിയിരിക്കുന്ന ഹൈഡ്രോകാർബണുകളുടെ 84% വും ഉപയോഗിക്കപ്പെടുന്നത് പെട്രോൾ, ഡീസൽ, ദ്രവീകരിച്ച പെട്രോളിയം വാതകം തുടങ്ങിയ ഊർജ സമ്പുഷ്ട ഇന്ധനങ്ങൾ ഉല്പാദിപ്പിക്കുവാനാണ്‌.[3] ലഘുവിഭാഗത്തിൽപ്പെട്ട എണ്ണയിൽ നിന്നാണ് ഈ ഇന്ധനങ്ങൾ എളുപ്പത്തിൽ ഉല്പാദിപ്പിക്കുവാനാകുക. പക്ഷെ ലോകത്തുള്ള ലഘു എണ്ണ നിക്ഷേപങ്ങൾ ഉപയോഗിച്ചു തീർന്നുകൊണ്ടിരിക്കുന്നതിനാൽ, ഇനി ലഭിക്കുന്ന ഘന എണ്ണയേയും ബിറ്റുമിനേയും ഓയിൽ റിഫൈനറികൾവെച്ച് കൂടുതൽ സംസ്കരണ പ്രവർത്തനങ്ങൾക്ക് വിധേയമാക്കേണ്ടി വരുകയും, ആവശ്യമുള്ള ഉല്പന്നങ്ങളുടെ ഉല്പാദനത്തിന് കൂടുതൽ ചെലവുള്ളതും സങ്കീർണ്ണവുമായ പ്രക്രിയകൾ നടത്തേണ്ടിയും വരുന്നു. ഘന എണ്ണയിൽ കാർബൺ കൂടുതലും ഹൈഡ്രജൻ കുറഞ്ഞ അളവിലുമായതിനാൽ, ഇത്തരം പ്രക്രിയകളിൽ കൂടുതലും എണ്ണയിലെ തന്മാത്രകളിൽനിന്ന് ഒന്നുകിൽ അധികമുള്ള കാർബൺ നീക്കം ചെയ്യുകയോ ആവശ്യത്തിന് ഹൈഡ്രജൻ ചേർക്കുകയോ ചെയ്യുകയും. പിന്നീട് നീളം കൂടിയ ഹൈഡ്രോകാർബൺ തന്മാത്രകളെ ഇന്ധനങ്ങളിൽ കാണപ്പെടുന്ന ലഘുവും നീളം കുറഞ്ഞതുമായ തന്മാത്രകളാക്കുന്നതിന് വേണ്ടി ദ്രവ്യോല്പ്രേരിത വിഘടനത്തിന് (fluid catalytic cracking) വിധേയമാക്കുകയും ചെയ്യുന്നു.

ഉയർന്ന ഊർജദായക ശേഷി, കൈമാറ്റം ചെയ്യപ്പെടാനുള്ള കഴിവ്, സമൃദ്ധമായ ലഭ്യത തുടങ്ങിയവ പെട്രോളിയത്തെ ലോകത്തിന്റെ ഏറ്റവും പ്രധാനപ്പെട്ട ഊർജ്ജ സ്രോതസ്സാക്കി മാറ്റി. 1950 കളിലാണ്‌ ഇവ വ്യാപകമായി ഉപയോഗിക്കപ്പെടാൻ തുടങ്ങിയത്. ഔഷധങ്ങൾ, ലായകങ്ങൾ, രാസവളങ്ങൾ, കീടനാശിനികൾ, പലതരം പ്ലാസ്റ്റിക്കുകൾ തുടങ്ങി പല രാസ ഉല്പന്നങ്ങളുടെയും അസംസ്കൃതവസ്തുവാണ്‌ പെട്രോളിയം; ഊർജ്ജോത്പാദനത്തിന് ഉപയോഗിക്കപ്പെടാത്ത 16% മേൽ വിവരിച്ച മറ്റുപല വസ്തുക്കളും നിർമ്മിക്കുവാനാണുപയോഗിക്കുന്നത്.

ഭൂമിയുടെ പുറം‌പാളിയിൽ രൂപപ്പെടുന്ന ശിലകൾക്കിടയിലായാണ് പെട്രോളിയം കൂടുതലും കാണപ്പെടുന്നത്. എണ്ണ മണലുകളിലും (tar sands) ഇവ കാണപ്പെടാറുണ്ട്. എണ്ണ മണലുകൾ കൂടാതെ ഇപ്പോഴുള്ള പെട്രോളിയം നിക്ഷേപം 190 ക്യുബിക് കി.മീ (1.2 ട്രില്യൺ (ചെറിയ അളവിലുള്ള) വീപ്പകൾ) എന്നും,[4] എണ്ണമണലുകൾ ഉൾപ്പെടെ ഇത് 595 ക്യുബിക് കി.മീ (3.7 ട്രില്യൺ വീപ്പകൾ)[5] എന്നു കണക്കാക്കപ്പെട്ടിരിക്കുന്നു. ഇപ്പോഴത്തെ ഉപഭോഗം ഒരു ദിവസം 84 മില്യൺ വീപ്പകൾ ( 13.4x106 ക്യുബിക് മീറ്റർ) അഥവാ വർഷത്തിൽ 4.9 ക്യുബിക് കി.മീ ആണ്‌. പെട്രോളിയം നിക്ഷേപങ്ങളിൽ നിന്നെടുക്കാവുന്ന പെട്രോളിന്റെ അളവ് കാലക്രമേണ കുറഞ്ഞ് വരുന്നുണ്ട് , ഉപഭോഗത്തിൽ ഗണ്യമായ വർദ്ധനവ് സംഭവിച്ചിട്ടുമുണ്ട് ഇപ്പോൾ പ്രധാനമായും ഉപയോഗിക്കുന്നത് ശേഖരിച്ച് വച്ചിട്ടുള്ള എണ്ണയാണ്‌, പെട്രോളിന്റെ ശേഖരം 2039 ആവുന്നതോടെ ഉപയോഗിച്ച് തീരുമെന്നും കണക്കാക്കുന്നു, ഇതെല്ലാം ലോകത്തെ വൻ ഊർജ്ജ പ്രതിസന്ധിയിലേക്ക് നയിക്കും എന്ന് കണക്കാക്കുന്നു. എന്നാലും പല ഘടകങ്ങളും ഈ അനുമാനത്തെ മുന്നോട്ടോ പിന്നോട്ടോ മാറ്റാൻ സാധ്യതയുണ്ട്. ഇന്ത്യ, ചൈന, തുടങ്ങി മറ്റുള്ള വികസിച്ചു കൊണ്ടിരിക്കുന്ന രാജ്യങ്ങളുടെ വർദ്ധിച്ച ഉപഭോഗം; പുതിയ കണ്ടുപിടിത്തങ്ങൾ; മറ്റു ഊർജ്ജ സ്രോതസ്സുകളുടെ ഉപയോഗം; പരമ്പരാഗതമല്ലാത്ത എണ്ണ സ്രോതസ്സുകളുടെ കണ്ടുപിടിത്തം എന്നിവയെല്ലാം ഇതിനെ ബാധിക്കാവുന്ന കാര്യങ്ങളാണ്‌.

രസതന്ത്രം

ഒക്ടെയ്ൻ, പെട്രോളിയത്തിൽ കാണപ്പെടുന്ന ഒരു ഹൈഡ്രോകാർബണാണ്‌, രേഖകൾ ഏകബന്ധനത്തെയും കറുത്ത ഗോളങ്ങൾ കാർബണിനെയും വെളുത്ത ഗോളങ്ങൾ ഹൈഡ്രജനെയും സൂചിപ്പിക്കുന്നു

വിവിധങ്ങളായ ഹൈഡ്രോകാർബണുകളുടെ മിശ്രിതമാണ്‌ പെട്രോളിയം; ഏറ്റവും കൂടുതൽ കാണപ്പെടുന്ന സം‌യുക്തങ്ങൾ ആൽക്കെയ്നുകൾ, സൈക്ലോആൽക്കെയ്നുകൾ, ആരോമാറ്റിക്ക് ഹൈഡ്രോകാർബണുകൾ തുടങ്ങി കൂടുതൽ സങ്കീർണ്ണങ്ങളായ അസ്ഫാൾടിനുകൾ വരെ അടങ്ങിയിരിക്കും. ഒരോതരത്തിലുള്ള പെട്രോളിയത്തിനും അതിന്റേതായ പ്രത്യേകം തന്മാത്ര ചേരുവകളായിരിക്കും ഉണ്ടാവുക, അവ ആ പെട്രോളിയത്തിന്റെ നിറം വിസ്കോസിറ്റി തുടങ്ങി ഭൗതികവും രാസപരവുമായ ഗുണങ്ങളെ നിർണ്ണയിക്കുന്നു

പാരഫിനുകൾ എന്നും അറിയപ്പെടുന്ന ആൽക്കെയ്നുകൾ പൂരിത ഹൈഡ്രോകാർബണുകളാണ്‌, ഒറ്റ വരിയുള്ളതോ ശാഖകളോടു കൂടിയ നിലയിലോ കാണപ്പെടുന്ന ഇവയുടെ പൊതുവായ രാസവാക്യം CnH2n+2 ആണ്‌. സാധാരണയായി 5 മുതൽ 40 വരെ കാർബൺ ആറ്റങ്ങൾ ഒരു തന്മാത്രയിലുണ്ടാകും. നേരിയ അളവിൽ മറ്റ് ആൽക്കെയ്നുകളും പെട്രോളിയത്തിൽ കാണപ്പെടുന്നു.

പെന്റെയ്ൻ (C5H12) മുതൽ ഒക്ടെയ്ൻ (C8H18) വരെയുള്ള ആൽക്കെയ്നുകൾ സംസ്ക്കരണത്തിലൂടെ പെട്രോളായും, നോനയ്ൻ (C9H20) മുതൽ ഹെക്സാഡെക്കെയ്ൻ (C16H34) വരെയുള്ളവ ഡീസലും മണ്ണെണ്ണയായും (ജെറ്റ് ഇന്ധനത്തിന്റെ പ്രാഥമിക ഘടകമാണ്‌ ഇത്). ഹെക്സാഡെക്കെയ്നിന്‌ മുകളിലുള്ളവ ലൂബ്രിക്കെറ്റുകളായും മാറുന്നു. കൂടുതൽ ഭാരമുള്ളവയിൽ 25 കാർബണുകളുള്ള പാരഫിൻ വാക്സ്, 35 ഉം അതിന്‌ മുകളിലോ കാർബണുകളുള്ളവ അസ്ഫാൾടും ആണ്‌, ഇവയെല്ലാം തന്നെ ആധുനിക സംസ്കരണകേന്ദ്രങ്ങളിൽ കൂടുതൽ മൂല്യമുള്ള ഉല്പന്നങ്ങളായി മാറ്റുന്നു. കുറഞ്ഞ അളവിൽ കാർബണുകളുള്ളവ പ്രകൃതിവാതകമായും കണക്കാക്കുന്നു.

നാഫ്തീനുകൾ എന്നറിയപ്പെടുന്ന സൈക്ലോആൽക്കെയ്നുകൾ പൂരിത ഹൈഡ്രോകാർബണുകളാണ്‌ ഇവയ്ക്ക് ഒന്നോ അതിലധികമോ കാർബൺ വളയങ്ങളുണ്ടാകും. ഇവയിൽ കാർബൺ ആറ്റങ്ങൾ CnH2n എന്ന രാസവാക്യം വഴി ഹൈഡ്രജൻ ആറ്റങ്ങളുമായി ബന്ധിക്കപ്പെട്ടിരിക്കുന്നു. ആൽക്കെയ്നുകൾക്ക് സമാനമായ ഗുണങ്ങളാണ്‌ സൈക്ലോആൽക്കെയ്നുകളുടേതും പക്ഷെ ഇവയ്ക്ക് കൂടുതൽ ഉയർന്ന തിളനിലയാണുള്ളത്.

അപൂരിത ഹൈഡ്രോകാർബണുകളാണ്‌ ആരോമാറ്റിക് ഹൈഡ്രോകാർബണുകൾ ഇവയ്ക്ക് സമപ്രതലങ്ങളായ ആറ് കാർബണുകളടങ്ങിയ ബെൻസീൻ വളയങ്ങളുണ്ടാകും. ഇവയുടെ രാസവാക്യം CnHn. ഇവ കറുത്ത പുകയോടുകൂടി കത്തുന്നവയും, നല്ല സുഗന്ധമുള്ളവയുമാണ്‌. ഇവയിൽ ചിലത് അർബുദത്തിന്‌ കാരണമാകുന്നവയാണ്‌.

പെട്രോളിയത്തിന്റെ ഭാഗികമായ സ്വേദനം വഴിയാണ്‌ ഇത്തരത്തിലുള്ള വിവിധങ്ങളായ തന്മാത്രകൾ വേർതിരിച്ചെടുക്കുന്നത്, അത്‌വഴി ഗാസോലീൻ (പെട്രോൾ), മണ്ണെണ്ണ, ജെറ്റ് ഇന്ധനം തുടങ്ങിയവ വേർതിരിച്ചെടുക്കുന്നു. ഉദാഹരണത്തിന്‌ പെട്രോളിൽ ഉയർന്ന അളവിൽ അടങ്ങിയിരിക്കുന്ന 2,2,4-ട്രൈമീഥെയ്ൽപെന്റെയ്ൻ (ഐസോഒക്ടെയ്ൻ) എന്ന C8H18 രാസവാക്യത്തോടുകൂടിയ ആൽക്കെയ്ൻ ഓക്സിജനുമായി ചേർന്ന് താപോല്പാദന രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടുന്നു.[6]

2C8H18(l)+25O2(g)16CO2(g)+18H2O(l)+10.86 MJ

എണ്ണയിൽ അടങ്ങിയിരിക്കുന്ന ഒരോ തന്മാത്രകളുടെയും അളവ് പരീക്ഷണശാലകളിൽ നിർണ്ണയിക്കാവുന്നതാണ്‌.

പെട്രോളിയത്തിന്റെയോ ഗാസോലീന്റെയോ അപൂർണ്ണ ജ്വലനം വിഷമയമായ വസ്തുക്കളെ അവശേഷിപ്പിക്കുന്നു. കുറഞ്ഞ അളവിലുള്ള ഓക്സിജന്റെ സാന്നിധ്യത്തിലുള്ള ജ്വലനം കാർബൺ മോണോക്സൈഡ് പുറത്തുവിടുന്നു. വാഹനയന്ത്രങ്ങളിലും മറ്റും ഉയർന്ന മർദ്ദത്തിലും താപനിലയിലുമുള്ള ഇവയുടെ ജ്വലനം നൈട്രജൻ ഓക്സൈഡ് പോലെയുള്ള വാതകങ്ങൾക്ക് കാരണമാകുന്നു.

രൂപവത്കരണം

പൊതുവായി അംഗീകരിക്കപ്പെട്ടിരിക്കുന്ന സിദ്ധാന്തമനുസരിച്ച് അതിപുരാതന ജൈവാവശിഷ്ടങ്ങളിൽ നിന്ന് രൂപപ്പെടുന്നതാണ് പെട്രോളിയം.[7] പെട്രോളിയത്തിൽനിന്ന് വേർതിരിച്ചെടുത്ത തന്മാത്രകൾ അറിയപ്പെടുന്ന ജൈവതന്മാത്രകളുടെ ഘടനയുമായുള്ള സാമ്യം നിരീക്ഷിക്കപ്പെട്ടതിൽ നിന്നാണ് ആദ്യമായി ഈ സിദ്ധാന്തം രൂപപ്പെടാൻ കാരണമായത് (ചിത്രം).

പെട്രോളിയത്തിൽ നിന്ന് ആൽഫ്രെഡ് ട്രെയ്ബ്സ് വേർതിരിച്ചെടുത്ത വനേഡിയം പ്രൊഫിറിന്റെ (vanadium porphyrin) ഘടനയും, ജൈവതന്മാത്രയായ ക്ലോറോഫിൽll (chlorophyll) ന്റെ ഘടനയും, ട്രെയ്ബ്സ് ഈ രണ്ട് തന്മാത്രകളുടെ ഘടനകൾ തമ്മിലുള്ള സാമ്യം നിരീക്ഷിച്ചു.

ഭൂമിശാസ്ത്രകാരന്മാരുടെ നിഗമനപ്രകാരം അതിപുരാതന ജൈവാവശിഷ്ടങ്ങൾ ഉന്നത മർദ്ദത്തിനും താപീകരണത്തിനും വിധേയമായി രൂപപ്പെടുന്നതാണ്‌ പെട്രോളിയവും പ്രകൃതിവാതകവും. ചരിത്രാതീതകാലത്തെ സമുദ്രജീവികളുടെയും ആൽഗകളുടെയും അവശിഷ്ടങ്ങൾ വലിയ അളവിൽ സമുദ്രത്തിന്റെ അടിത്തട്ടിൽ അടിഞ്ഞുകൂടി ചെളിയുമായി കൂടിക്കലർന്ന് കിടക്കുകയും ചെയ്യുന്നു (ചരിത്രാതീത സസ്യാവശിഷ്ടങ്ങൾ കൽക്കരിയായി രൂപപ്പെടുകയാണ്‌ ചെയ്യുന്നത്). കാലക്രമേണ ചെളികൊണ്ടുള്ള ആവരണം അവയ്ക്ക് മീതെ രൂപപ്പെടുന്നു. ഇങ്ങനെ അവ ഓക്സിജന്റെ അസാന്നിധ്യത്തിൽ ഉന്നത മർദ്ദത്തിനും താപത്തിനും വിധേയമാകുകയും ചെയ്യുന്നു. ഇത് ആ ജൈവാവശിഷ്ടങ്ങളെ രാസപരമായ മാറ്റത്തിന്‌ കാരണമാകുന്നു, ആദ്യം ഇത് മെഴുകിന് സമാനമായ കെറോജീൻ എന്ന വസ്തുവായി മാറുന്നു, ഇത് ലോകത്തിന്റെ വിവിധ ഭാഗങ്ങളിൽ കണ്ടെത്തിയിട്ടുണ്ട്, കൂടുതൽ താപീകരണത്തിലൂടെ ഇവ കാറ്റജെനിസിസ് എന്ന പ്രവർത്തനത്തിലൂടെ ദ്രാവകത്തിന്റെയും വാതകത്തിന്റെയും രൂപത്തിലുള്ള ഹൈഡ്രോകാർബണുകളായി മാറുന്നു.

പെട്രോളിയം രൂപപ്പെടാൻ ആവശ്യമായ താപനിലയിലും കുറഞ്ഞ താപനിലയാണ്‌ ഉള്ളതെങ്കിൽ കെറോജീൻ ആയിതന്നെ നിലനിൽക്കുന്നു. ആവശ്യമായതിലും കൂടുതൽ താപനിലയാണെങ്കിൽ താപവിഘടനം വഴി പ്രകൃതിവാതകം രൂപം കൊള്ളുന്നു. ഇത്തരം താപനില മേഖല ഭൂമിയുടെ പല ഭാഗങ്ങളിലും വിവിധ ആഴങ്ങളിൽ കാണപ്പെടുന്നു, താരതമ്യേനയുള്ള ആഴം 4 മുതൽ 6 കി.മീറ്റർ വരെയാണ്‌. ചില അവസരങ്ങളിൽ വളരെ ആഴത്തിൽ രൂപം കൊണ്ട പെട്രോളിയം ഉയർന്നുവന്ന് മുകൾത്തട്ടിലുള്ള പാറക്കടിയിൽ തങ്ങി നിൽക്കാറുണ്ട്. അതബാസ്ക എണ്ണ മണലുകൾ ഇതിനൊരുദാഹരണമാണ്‌.

സ്വാഭാവിക എണ്ണ നിക്ഷേപങ്ങൾ

ഹൈഡ്രോകാർബൺ കെണി.

എണ്ണ നിക്ഷേപം രൂപം കൊളളാൻ മൂന്ന് സാഹചര്യങ്ങൾ ആവശ്യമാണ്‌: ആഴത്തിൽ ഹൈഡ്രോകാർബണുകൾ നിക്ഷേപിക്കപ്പെട്ട ശിലകൾ കൂടെ പെട്രോളിയം രൂപപ്പെടലിനു സഹായിക്കുന്ന താപനില; ഇതിനെ സംഭരിക്കാൻ കഴിവുള്ള അകം പൊള്ളയായ ശില; എണ്ണയെ ഭൂമിയുടെ ഉപരിതലത്തിലേക്ക് കടത്തിവിടാതെ തടഞ്ഞ് നിർത്തുന്ന അടപ്പ് ശില. ഇങ്ങനെയുള്ള നിക്ഷേപങ്ങളിൽ സാധാരണയായി ഇവ മൂന്ന് പാളികളുള്ള അവസ്ഥയിലാണ്‌ കാണപ്പെടുന്നത് മുകളിൽ പ്രകൃതിവാതകത്തിന്റെയും ഏറ്റവും താഴെ ജലത്തിന്റെ ഒരുപാളിയും. ഒരോപാളിയുടെയും വലിപ്പം ഒരോ നിക്ഷേപത്തിലും വ്യത്യാസപ്പെട്ടിരിക്കാറുണ്ട്.

ഭൂരിഭാഗം ഹൈഡ്രോകാർബണുകളും പാറയെക്കാളും ജലത്തെക്കാളും സാന്ദ്രത കുറഞ്ഞവയായതിനാൽ ഏതെങ്കിലും പൊള്ളയായ പാറയിൽ തടഞ്ഞ് നിർത്തപ്പെടുന്നത് വരെ ഇവ മുകൾതട്ടിലേക്ക് സഞ്ചരിച്ച്കൊണ്ടിരിക്കും, ചിലപ്പോൾ ഭൗമാന്തർജലപ്രവാഹങ്ങൾ ഇവയുടെ സ്ഥാനചലനത്തിന്‌ കാരണമാകുന്നു. ജലപ്രവാഹം ഇവയേയുംകൊണ്ട് നൂറ്കണക്കിന്‌ കിലോമീറ്ററുകൾ സഞ്ചരിക്കുകയോ ചെറിയൊരു ആഴത്തിലേക്ക് മാറ്റുകയോ ചെയ്യാം. ഏതെങ്കിലും വിധത്തിൽ അവ പാറയുടെ കെണിയിൽ പെട്ടാൽ അവിടെ ഒരു എണ്ണ നിക്ഷേപം രൂപം കൊള്ളുന്നു. ഇങ്ങനെയുള്ള നിക്ഷേപങ്ങളിൽ നിന്ന് തുരക്കുകയും ശേഷം പമ്പ് ചെയ്തെടുക്കുകയും ചെയ്യുന്നു.

പാരമ്പര്യേതര എണ്ണ നിക്ഷേപങ്ങൾ

ഉപരിതലത്തിലേക്ക് രക്ഷപ്പെടുന്ന എണ്ണയെ എണ്ണ ഭക്ഷിക്കുന്ന ബാക്ടീരിയകൾ ജൈവീകവിഘടനത്തിന്‌ വിധേയമാക്കുന്നു. എണ്ണ മണലുകളിലെ എണ്ണ നിക്ഷേപം ഭാഗികമായി ഇങ്ങനെ ജൈവീകവിഘടനം നടന്നവയായിരിക്കും. ഇങ്ങനെ തുടർച്ചയായി പുറതള്ളപ്പെട്ട എണ്ണയിൽ കുറേ ഭാഗം നശിപ്പിക്കപ്പെടുന്നുവെങ്കിലും വലിയൊരുഭാഗം ഇപ്പോഴും നിലവിലുണ്ട്- ഇത് പാരമ്പര്യ എണ്ണ നിക്ഷേപങ്ങളിലുള്ളതിനേക്കാൾ കൂടുതലായിരിക്കും. ആദ്യം ചെറിയൊരു ഭാഗം നശിപ്പിക്കപ്പെട്ട് വളരെ വലിയ അളവിലുള്ള എണ്ണ നിക്ഷേപങ്ങളാണ്‌ കാനഡയിലുള്ള സ്വാഭാവിക ബിറ്റുമിൻ, വെനുൻസ്വെലയിലെ കൂടുതൽ ഘനത്വമുള്ള സ്വാഭാവിക എണ്ണ. ഈ രണ്ട് രാജ്യങ്ങളിലാണ്‌ ലോകത്തിൽ ഏറ്റവും കൂടുതൽ എണ്ണ മണൽ നിക്ഷേപങ്ങളുള്ളത്.

അത് പോലെ എണ്ണ ചാലുകൾ എന്നാൽ എണ്ണയുടെ ഉറവിടങ്ങളായ ശിലകളാണ്‌, ഇവയിലുള്ള ഹൈഡ്രോകാർബണുകൾ സ്വാഭാവിക എണ്ണ രൂപവത്കരണത്തിന്‌ സഹായകമായ ഉന്നത മർദ്ദത്തിനോ തപീകരണത്തിനോ വിധേയമാവാത്തവയാണ്‌. സാങ്കേതികമായി പറഞ്ഞാൽ ഇത്തരം എണ്ണച്ചാലുകളിൽ സ്വാഭാവിക എണ്ണയില്ല എന്നുതന്നെ പറയാം, മറിച്ച് ഇവ കളിമണ്ണുകളാൽ രൂപപ്പെട്ട കാഠിന്യമേറിയ ശിലകളാണ്‌ ഇവയിൽ മെഴുകിന്‌ സമാനമായ കെറോജീൻ അടങ്ങിയിരിക്കും. ഇവയിലുള്ള കെറോജീനെ പ്രകൃതി പ്രവർത്തനങ്ങളെ അനുസ്മരിപ്പിക്കും വിധം മർദ്ദത്തിനും താപത്തിനും വിധേയമാക്കി സ്വാഭാവിക എണ്ണയാക്കി മാറ്റാം. ഈ വിദ്യ നൂറ്റാണ്ടുകൾക്ക് മുൻപേ അറിവുള്ളതാണ്‌. 1694 ലെ ബ്രിട്ടീഷ് ക്രൗൺ പേറ്റന്റ് നമ്പർ 330 ഇതിന്‌ പേറ്റന്റ് നൽകിയതും കാണാം. എണ്ണ ചാലുകൾ ലോകത്തിൽ വിവിധ രാജ്യങ്ങളിൽ കണ്ട് വരുന്നുണ്ട്. അമേരിക്കൻ ഐക്യനാടുകളിലാണ്‌ ഇവയുടെ ഏറ്റവും വലിയ നിക്ഷേപം ഉള്ളത്.

അജൈവ ഉറവിടം

റഷ്യയിലെ ഒരു പറ്റം ഭൂമിശാസ്ത്രകാരന്മാർ ഇവയുടെ ജൈവീകമല്ലാത്ത ഉറവിടത്തെ പിന്താങ്ങുന്നുണ്ട്. ഇവരുടെ വാദപ്രകാരം ഹൈഡ്രോകാർബണുകൾ ജൈവാവശിഷ്ടങ്ങളിൽ നിന്നുണ്ടായവയല്ല മറിച്ച് അവ ഭൗമാന്തർഭാഗത്ത പ്രകൃത്യാ ഉള്ളവയാണ്‌ എന്നായിരുന്നു. 1950 കളിൽ നികോളായ് കുഡ്റിയത്സെവിനെ പിൻപറ്റി തോമസ് ഗോൾഡ് പാശ്ചാത്യലോകത്ത് വാദങ്ങൾ നടത്തിയിരുന്നു.]

ഇവയുടെ ഉറവിടം അജൈവീകമാണ്‌ എന്ന വാദത്തിന്‌ ശാസ്ത്രീയമായ അടിത്തറ ഉണ്ടായിരുന്നില്ല എന്ന് മാത്രമല്ല ഇന്ന് നിലവിലുള്ള എല്ലാ നിക്ഷേപങ്ങളും ജൈവീകമായ ഉറവിടമുള്ളവയുമാണ്‌. ഇങ്ങനെയുള്ള വാദത്തെ പിന്തുണക്കുന്ന എന്തെങ്കിലും ഭൗമശാസ്ത്രകാരന്മാർക്ക് കണ്ടുപിടിക്കാൻ കഴിഞ്ഞിട്ടുമില്ല.

വർഗ്ഗീകരണം

ഇടത്തരം ഘനത്വമുള്ള സ്വാഭാവിക എണ്ണ

ഇന്നത്തെ പെട്രോളിയം വ്യവസായം സ്വാഭാവിക എണ്ണയെ ഭൂമേഖലക്കനുസരിച്ചും (ഉദാ: പശ്ചിമ ടെക്സാസ്, ബ്രെന്റ്, ഒമാൻ), എ.പി.ഐ ഗുരുത്വാകർഷണം (സാന്ദ്രത അളക്കാനുള്ള വ്യാവസായിക ഏകകം), അടങ്ങിയിരിക്കുന്ന സൾഫറിന്റെ അളവ് തുടങ്ങിയവയനുസരിച്ചും തരംതിരിച്ചിട്ടുണ്ട്. ഉയർന്ന സാന്ദ്രതയാണെങ്കിൽ ഘന എണ്ണ എന്നും കുറഞ്ഞ സാന്ദ്രതയാണെങ്കിൽ ലഘു എണ്ണയുമാണ്‌, അത് പോലെ കുറഞ്ഞ സൾഫറിന്റെ സാന്നിദ്ധ്യം മാധുര്യം എന്നും കൂടിയ അളവ് അമ്ലത്വമുള്ളത് എന്നു വീക്ഷിച്ചിട്ടുണ്ട്.

പെട്രോളിയം ലഭിക്കുന്ന സ്ഥലം പ്രാധാന്യമുള്ളതാണ്‌ കാരണം അത് ഇതിന്റെ കൊണ്ട്പോകാനുള്ള ചെലവ് വർദ്ധിപ്പിക്കുന്നു. ലഘു സ്വാഭാവിക എണ്ണയ്ക്കാണ്‌ കൂടുതൽ പ്രാമുഖ്യം എന്തെന്നാൽ ഇവ കൂടുതൽ ഗാസോലീൻ അടങ്ങിയതായിരിക്കും. അപ്രകാരം തന്നെ മാധുര്യ എണ്ണയാണ്‌ അമ്ല എണ്ണയേക്കാൾ നല്ലത്, അമ്ല എണ്ണയിൽ സൾഫറിന്റെ അളവ് കൂടുതലായിരിക്കും, സൾഫർ പരിസ്ഥിതി മലിനീകരണത്തിന്‌ കാരണമാകുന്നതിനാൽ കൂടുതൽ സംസ്കരണം വേണ്ടി വരുന്നു. ഒരോ സ്വാഭാവിക എണ്ണയ്ക്കും അതിന്റേതായ തന്മാത്രാ ഗുണവിശേഷണങ്ങളായിരിക്കും ഇത് പെട്രോളിയം പരീക്ഷണശാലകളിൽ നടത്തുന്ന സ്വാഭാവിക എണ്ണ ഗുണമേന്മാ അപഗ്രഥനം വഴി മനസ്സിലാക്കുന്നു.

പ്രത്യേക മേഖലകളിൽ നിന്നുള്ള സ്വാഭാവിക എണ്ണയുടെ തന്മാത്രാ ഗുണവിശേഷങ്ങൾ രേഖപ്പെടുത്തുകയും ഇത് പ്രകാരം എണ്ണയുടെ വില നിശ്ചയിക്കപ്പെടുകയും ചെയ്തു. ഇതാണ്‌ ലോകമെമ്പാടും ഉപയോഗിക്കുന്നത്. അവയിൽ ചിലതാണ്‌:

  • പശ്ചിമ ടെക്സാസ് ഇടത്തരം, മധുരമയമുള്ള, ലഘു എണ്ണ.
  • ബ്രെന്റ് മിശ്രിതം, കിഴക്കൻ ഷെട്‌ലാൻഡ് ബേസിനിലുള്ള ബ്രെന്റ്, നിനിയൻ എന്നിവിടങ്ങളിൽ നിന്നുള്ളത്.
  • ദുബൈ-ഒമാൻ, മധ്യപൗരസ്ത്യനാടുകളിൽ നിന്നുള്ളവ.
  • ടാപിസ്, മലേഷ്യ
  • മിനാസ്, ഇന്തോനേഷ്യ
  • ഒപെക് ആധാരം, ഒപെക് രാജ്യങ്ങളിൽ നിന്നുള്ള പെട്രോളിയം മിശ്രിതത്തിന്റെ പിണ്ഡത്തിന്റെ ശരാശരി.

ഒരോ വർഷം കഴിയുന്തോറും ഇത്തരം മാനദണ്ഡങ്ങളുടെ നിലവാരം താഴ്ന്നുകൊണ്ടിരിക്കുകയാണ്‌. വിവിധ പ്രദേശങ്ങളിൽ നിന്നുള്ള എണ്ണകൾ സമിശ്രമാക്കപ്പെടുകയും, വിവിധ രാജ്യങ്ങളിലേക്ക് വിതരണം ചെയ്യപ്പെടുകയും ചെയ്യുന്നു.

പെട്രോളിയം വ്യവസായം

പെട്രോളിയം വ്യവസായം എന്നാൽ അവയുടെ പര്യവേഷണം, ഉൽഖനനം, സംസ്കരണം, കൈമാറ്റം (എണ്ണ സംഭരണി ട്രക്കുകൾ, കുഴൽ ശൃംഖല തുടങ്ങിയവ വഴി), പെട്രോളിയം ഉല്പന്നങ്ങളുടെ വിപണനം എന്നിവയാണ്‌. ഈ മേഖലയുടെ ഏറ്റവും പ്രധാനപ്പെട്ട ഉല്പന്നം ഗാസോലീൻ അഥവാ പെട്രോൾ ആണ്‌. മറ്റു പല രാസ ഉല്പന്നങ്ങളുടെയും അസംസ്കൃതവസ്തുവാണ്‌ പെട്രോൾ‍, ഔഷധങ്ങൾ, ലായകങ്ങൾ, രാസവളങ്ങൾ, കീടനാശിനികൾ, പ്ലാസ്റ്റിക്കുകൾ മുതലായവ.

പല വ്യവസായങ്ങൾക്കും ഒഴിച്ച് കൂടാനാവത്തതാണ്‌ പെട്രോളിയം, വ്യവസായിക ജനപദങ്ങളുടെ നിലനില്പിനും ഇത് വളരെ ആവശ്യമാണ്‌, അത് കൊണ്ട് തന്നെ പല രാജ്യങ്ങളെയും ഇത് വളരെയധികം ബാധിക്കുന്ന കാര്യവുമാണ്‌. ലോകത്തിന്റെ ഊർജ്ജാവശ്യങ്ങളുടെ വലിയൊരു പങ്ക് എണ്ണ വഹിക്കുന്നു. ഏറ്റവും കുറഞ്ഞ 32% യൂറോപ്പ്, ഏഷ്യ തുടങ്ങി, 53% വരെ ഉപയോഗിക്കുന്ന മധ്യപൗരസ്ത്യരാജ്യങ്ങൾ വരെ. മറ്റുള്ള മേഖലകളുടെ പങ്ക് ഇപ്രകാരമാണ്‌. ദക്ഷിണ-മധ്യ അമേരിക്ക (44%), ആഫ്രിക്ക (41%), ഉത്തര അമേരിക്ക (40%). ലോകം മൊത്തത്തിൽ 30 ബില്യൺ വീപ്പകൾ (4.8 ക്യുബിക് കി.മീറ്റർ) ഒരു വർഷം ഉപയോഗിക്കുന്നു, വികസിത രാജ്യങ്ങളിലാണ്‌ ഇവയുടെ ഏറ്റവും വലിയ ഉപഭോഗം നടക്കുന്നത്. 2004 ഉപയോഗിക്കപ്പെട്ട എണ്ണയുടെ 24% അമേരിക്കൻ ഐക്യനാടുകളാണ്‌. മൂല്യത്തിന്റെ കാര്യത്തിൽ പെട്രോളിയം വ്യവസായം ലോകത്തിൽ ഏറ്റവും വലുതാണ്‌.

പെട്രോളിയം പര്യവേഷണം

ഉൽഖനനം

എണ്ണപ്പാടങ്ങളിലുള്ള എണ്ണക്കിണറുകൾ വഴിയുള്ള ഉൽഖനനമാണ്‌ സാധാരണമായ രീതി. സാങ്കേതികവിദ്യയുടെ മുന്നേറ്റത്തോടെയും ഹൈഡ്രോകാർബണുകളുടെ വർദ്ധിച്ച ആവശ്യവും എണ്ണയുടെയും വാതകത്തിന്റെയും ഫലപ്രദമായ തരത്തിലുള്ള പര്യവേഷണത്തിന് ഹേതുവായിട്ടുണ്ട്. ഭൗമാന്തർഭാഗത്ത് നിലനിൽക്കുന്ന മർദ്ദത്തിന്റെ സഹായത്തോടെ ഉൽഖനനം ചെയ്തെടുക്കുന്നതാണ്‌ പ്രാഥമിക രീതി, ഇതുവഴി ഏകദേശം നിലവിലുള്ള 20% എണ്ണയും പുറത്തെടുക്കാം. മർദ്ദത്തിന്റെ ഉറവിടം വിവധങ്ങളാകാം, എണ്ണയുടെ അടിയിൽ കിടക്കുന്നു ജലത്തിന്റെ മർദ്ദം ഇങ്ങനെയുള്ളതിനെ ജലനിയത്രിത നിക്ഷേപം എന്നും, എണ്ണയുടെ മുകളിൽ കാണപ്പെടുന്ന വാതകം ചെലുത്തുന്ന മർദ്ദമാണെങ്കിൽ വാതകനിയന്ത്രിതം എന്നും പറയുന്നു. ഇങ്ങനെയുള്ള മർദ്ദത്തിന്റെ സഹായത്തോടെ എണ്ണ ഖനനം നടത്തുമ്പോൾ മർദ്ദം കുറഞ്ഞ് ഒരു ഘട്ടം കഴിഞ്ഞാൽ മർദ്ദത്തിന്‌ എണ്ണയെ ഉപരിതലത്തിൽ എത്തിക്കാൻ കഴിയാതെ വരുന്നു, ശേഷമുള്ള രണ്ടാം ഘട്ടത്തിൽ 5 മുതൽ 10 % വരെ എണ്ണ പുറത്തെടുക്കാം. ജലനിയന്ത്രിത നിക്ഷേപങ്ങളിൽ ജലം എണ്ണക്കടിയിലേക്ക് കടത്തിവിട്ടും, വാതകനിയന്ത്രിത നിക്ഷേപങ്ങളിൽ മുകളിലുള്ള വാതക പാളിയിലേക്ക് വാതകം കടത്തിവിട്ടും വീണ്ടും മർർദ്ദം നിലനിർത്താൻ സാധിക്കും. ഇങ്ങനെ രണ്ടാം ഘട്ടത്തിലൂടെയുള്ള ഉൽഖനനവും ഫലപ്രദമാകാതെ വരുമ്പോൾ എണ്ണയുടെ വിസ്കോസിറ്റി കുറച്ചുകൊണ്ട് കൂടുതൽ എണ്ണ പുറത്തെത്തിക്കാനുള്ള മൂന്നാം ഘട്ടത്തിലേക്ക് നടക്കുന്നു, താപം പ്രവഹിപ്പിക്കുക, എണ്ണയുടെ പ്രതലബലം വർദ്ധിപ്പിക്കാനുള്ള വസ്തുക്കൾ പ്രയോഗിക്കുക, കാർബൺഡൈഓക്സൈഡ് പോലെയുള്ള വാതകങ്ങൾ ശക്തിയായി പ്രവഹിപ്പിക്കുക എന്നിവ ഈ ഘട്ടത്തിൽ നടത്തുന്നു.

മറ്റ് മാർഗ്ഗങ്ങൾ

2003 മുതൽ എണ്ണ വിലയിലുണ്ടായ വർദ്ധനവ് മറ്റു എണ്ണയുല്പാദനത്തിന് വേണ്ടിയുള്ള മാർഗ്ഗങ്ങൾ ആരായുന്നതിന്‌ പ്രാധാന്യം നൽകി. പ്രധാനപ്പെട്ട മറ്റ് മാർഗ്ഗങ്ങൾ എണ്ണ ചാലുകൾ, എണ്ണ മണലുകൾ എന്നിവയിൽ നിന്നുള്ള എണ്ണ ഉല്പാദനമാണ്‌. ഇവ വലിയ അളവിൽ ഭൂമിയിൽ കാണപ്പെടുന്നുമുണ്ട്, ഇവയിൽ നിന്ന് ചെലവ് കുറഞ്ഞരീതിയിൽ പരിസ്ഥിതിയെ കളങ്കപ്പെടുത്താതെയുള്ള ഉല്പാദനം വെല്ലുവിളിയുയർത്തുന്നതാണ്‌.

രാസപക്രിയയിലൂടെ മീഥെയ്നിനേയൊ കൽക്കരിയേയൊ എണ്ണയിൽ കണ്ടുവരുന്ന ഹൈഡ്രോകാർബണുകള്ളാക്കി മാറ്റാം. ഇതിൽ ഏറ്റവും പ്രശസ്തമായത് ഫിഷർ-ട്രോപ്ഷ് പ്രക്രിയയാണ്‌. 1920 കളിൽ ജർമ്മനിയിൽ ഉപയോഗിച്ചിരുന്ന വിദ്യയാണിത്, രണ്ടാം ലോകമഹായുദ്ധ സമയത്ത് പെട്രോളിയം ഇറക്കുമതി നിഷേധിക്കപ്പെട്ട സമയത്ത് ജർമ്മനിയിലെ നാസി സർക്കാർ ഈ വിദ്യ ഉപയോഗിച്ചിരുന്നു. ഇത് അറിയപ്പെട്ടത് ബദൽ എണ്ണ (ജർമ്മൻ: Ersatz, ഇംഗ്ലീഷ്: substitute) എന്നായിരുന്നു.രണ്ടാം ലോകമഹായുദ്ധസമയത്ത് ഈ വിദ്യയുപയോഗിച്ച് ആവശ്യമുള്ള എണ്ണയുടെ ഏതാണ്ട് പകുതിയോളം ജർമ്മനിക്ക് ലഭിച്ചിരുന്നു. പക്ഷെ താരതമ്യേന സുലഭമായി എണ്ണ ലഭിക്കുമായിരുന്ന അക്കാലത്ത് ഈ വിദ്യ ഒരു അറ്റകൈ പ്രയോഗമായാണ്‌ ജർമ്മനി ഉപയോഗിച്ചിരുന്നത്. എണ്ണവില വർദ്ധിച്ചു കൊണ്ടിരിക്കുന്ന ഇക്കാലത്ത് ഈ പ്രക്രിയക്ക് വേണ്ടി വരുന്ന ചെലവ് താരതമ്യേന കുറഞ്ഞ് വരുകയാണ്‌.

നിലവിൽ ലോകത്ത് രണ്ട് രാജ്യങ്ങൾ ഈ വിദ്യ വാണിജ്യപരമായി ഉപയോഗിക്കുന്നുണ്ട്, മലേഷ്യയിലെ ബിന്റുലുവിലുള്ള ഷെൽ ഓയിൽ എന്ന കമ്പനി പ്രകൃതിവാതകം ഉപയോഗിച്ചു കുറഞ്ഞ സൾഫർ അടങ്ങിയ ഡീസൽ ഉല്പാദിപ്പിക്കുന്നു. ദക്ഷിണാഫ്രിക്കയിലെ സാസോൾ കൽക്കരി ഉപയോഗിച്ച് കൃത്രിമമായി വിവിധതരത്തിലുള്ള പെട്രോളിയം ഉല്പന്നങ്ങൾ നിർമ്മിക്കുന്നു.

ദക്ഷിണാഫ്രിക്കയിലെ സാസോൾ കമ്പനി ഇങ്ങനെ രാജ്യത്തിന്‌ ആവശ്യമുള്ള ഡീസലിന്റെ നല്ലൊരു ഭാഗം ഉല്പാദിപ്പിക്കുന്നു. ഈ പ്രക്രിയ കുറഞ്ഞ സൾഫറുള്ള ഡീസൽ നൽകുന്നുവെങ്കിലും ഇത് വലിയ അളവിൽ ഹരിതഗൃഹ വാതകങ്ങൾ പുറത്ത് വിടുന്നുണ്ട്. 1930 കളിൽ അമേരിക്കൻ ഐക്യനാടുകളിൽ പ്രചാരത്തിലിരുന്ന മറ്റൊരു രീതിയാണ്‌ കാരിക്ക് പ്രക്രിയ. ഇതിൽ വായുവിന്റെ അഭാവത്തിൽ കൽക്കരിയിൽ കുറഞ്ഞ കണ്ണികളുള്ള ഹൈഡ്രോകാർബണുകളെ സ്വേദീകരിച്ചെടുക്കുകയാണ്‌ ചെയ്യുന്നത്.

എണ്ണ ചാലുകളിൽ ഖനനം നടത്തി നൂതന മാർഗങ്ങളിലൂടെയുള്ള സംസ്കരണം വഴിയും എണ്ണ ഉല്പാദനം സാധ്യമാണ്‌.

ബെക്കൻ രൂപവൽക്കരണം പോലെയുള്ള പാരമ്പര്യേതര നിക്ഷേപങ്ങളിൽ നിന്നും എണ്ണ ഖനനം ചെയ്തെടുക്കാവുന്നതാണ്‌. ഇത്തരം രൂപവൽക്കരണങ്ങൾ ഉപരിതലത്തിൽ നിന്നും ഏകദേശം 2 മൈലുകളോളം (3 കി.മീറ്റർ) താഴെയായിരിക്കും, ഏതാനും മീറ്ററുകൾ മാത്രമായിരിക്കും ഇവയുടെ കനം, ആയിരക്കണക്കിന് ചതുരശ്രമൈലുകളോളം ഇവ വ്യാപിച്ച് കിടക്കുന്നുണ്ടാകും. ഇവയിൽ വളരെ പരിമിതമായ ഖനന സാധ്യതകൾ മാത്രമേ ഇവയിൽ ഉണ്ടാവുകയുള്ളു. എൽമ് കോലീ എണ്ണപ്പാടത്തിൽ ഇങ്ങനെ വിലങ്ങനെ ഒരുപാട് തുരക്കൽ വേണ്ടി വന്നിട്ടുണ്ട്.

അടുത്തകാലത്ത് നിലവിൽ വന്ന തെർമൽ ഡീപോളിമറൈസേഷൻ (TDP) എന്ന പ്രക്രിയ സങ്കീർണ്ണ ജൈവവസ്തുക്കളെ ലഘു സ്വാഭാവിക എണ്ണയായുള്ള രൂപാന്തരണത്തിന്‌ സഹായിക്കുന്നു. താപത്തിന്റെയും മർദ്ദത്തിന്റെയും സഹായത്താൽ ഹൈഡ്രജന്റെയും ഓക്സിജന്റെയും കാർബണിന്റെയും നീണ്ട കണ്ണികൾ ഹ്രസ്വ കണ്ണികളായുള്ള ഹൈഡ്രോകാർബണുകളായി വിഘടിപ്പിക്കുന്നു. ഇത് അശ്മക ഇന്ധനങ്ങൾ രൂപപ്പെടുന്ന ഭൗമ പ്രക്രിയകൾക്ക് സമാനമാണ്‌. സൈദ്ധാന്തികമായി ഏത് ജൈവാവശിഷ്ടങ്ങളെയും ഇതുവഴി പെട്രോളിയത്തിന്‌ സമാനമാക്കി മാറ്റാം.

ചരിത്രം

ലോക ചരിത്രപ്രകാരം പെട്രോളിയം ആധുനിക ലോകത്തിന്‌ മാത്രം അറിയുന്ന വസ്തുവല്ല. ഹെറോദോതസിന്റെ വിവരണം ദൊയൊദൊറസ് സിസലസ് സ്ഥിരീകരിക്കുന്നതനുസരിച്ച് ബാബിലോണിലെ മതിലുകളും ഗോപുരങ്ങളും നിർമ്മിക്കാൻ അസ്ഫാൾട്ട് ഉപയോഗിച്ചിരുന്നു; ബാബിലോണിന്‌ സമീപമുള്ള അർദേരിക്കക്ക് സമീപം എണ്ണ കുഴികളുണ്ടായിരുന്നു. ഉയർന്ന അളവിൽ ഇവ നദീതീരങ്ങളിലും മറ്റും ഇവ കാണപ്പെടുകയും ചെയ്തിരുന്നു. പുരാതന പേർഷ്യയിലെ സമൂഹത്തിലെ മുകൾതട്ടുകാർ ഔഷധങ്ങൾക്കും വിളക്ക് കൊളുത്താനും പെട്രോളിയം ഉപയോഗിച്ചിരുന്നു.

ഉപയോഗങ്ങൾ

ഇന്ധനം

പെട്രോളിയത്തിന്റെ എല്ലാ ഡിസ്റ്റിലേഷനകളും ഇന്ധനമാണ്. കിട്ടുന്ന ഇന്ധനങ്ങൾ ഇവയാണ്

പെട്രോളിയം-രാജ്യം

ഉപഭോഗം

ലോക രാഷ്ട്രങ്ങളുടെ എണ്ണ ഉപഭോഗം (കൂടുതൽ കടുത്ത നിറം സൂചിപ്പിക്കുന്നത് കൂടുതൽ ഉപഭോഗം).

2006 ലെ എണ്ണ ഉപഭോഗം പ്രതിദിനം ആയിരം വീപ്പ, ആയിരം ക്യുബിക്ക് മീറ്റർ എന്നീ അളവുകളിൽ കാണിച്ചിരിക്കുന്നു.[8][9][10]

എണ്ണ ഉപഭോഗ രാജ്യങ്ങൾ 2006 (1000 bbl/day) (1000 m3/day) ജനസംഖ്യ ദശലക്ഷത്തിൽ bbl/year per capita
ഫലകം:Rh|അമേരിക്കൻ ഐക്യനാടുകൾ 1 ഫലകം:Convert 304 ഫലകം:Round
ഫലകം:Rh|ചൈന ഫലകം:Convert 1369 ഫലകം:Round
ഫലകം:Rh|ജപ്പാൻ 2 ഫലകം:Convert 128 ഫലകം:Round
ഫലകം:Rh|റഷ്യ 1 ഫലകം:Convert 142 ഫലകം:Round
ഫലകം:Rh|ജർമനി 2 ഫലകം:Convert 82 ഫലകം:Round
ഫലകം:Rh|ഇന്ത്യ 2 ഫലകം:Convert 1201 ഫലകം:Round
ഫലകം:Rh|കാനഡ ഫലകം:Convert 32[11] ഫലകം:Round
ഫലകം:Rh|ബ്രസീൽ ഫലകം:Convert 187 ഫലകം:Round
ഫലകം:Rh|ദക്ഷിണ കൊറിയ 2 ഫലകം:Convert 49[12] ഫലകം:Round
ഫലകം:Rh|സൌദി അറേബ്യ (OPEC) ഫലകം:Convert 27[13] ഫലകം:Round
ഫലകം:Rh|മെക്സിക്കോ 1 ഫലകം:Convert 107 ഫലകം:Round
ഫലകം:Rh|ഫ്രാൻസ് 2 ഫലകം:Convert 61[14] ഫലകം:Round
ഫലകം:Rh|യുണൈറ്റഡ് കിങ്ഡം 1 ഫലകം:Convert 61[15] ഫലകം:Round
ഫലകം:Rh|ഇറ്റലി 2 ഫലകം:Convert 58[16] ഫലകം:Round
ഫലകം:Rh|ഇറാൻ (OPEC) ഫലകം:Convert 68[17] ഫലകം:Round

ഉറവിടം: US Energy Information Administration

ഉല്പാദനം

എണ്ണയുൽപാദക രാജ്യങ്ങൾ
Graph of Top Oil Producing Countries 1960-2006, including Soviet Union[18]
# എണ്ണയുൽപാദക രാജ്യങ്ങൾ 103bbl/d (2006) 103bbl/d (2007)
1 ഫലകം:Rh|സൗദി അറേബ്യ (ഒപെക്) 10,665 10,234
2 ഫലകം:Rh|റഷ്യ 1 9,677 9,876
3 ഫലകം:Rh|അമേരിക്കൻ ഐക്യനാടുകൾ 1 8,331 8,481
4 ഫലകം:Rh|ഇറാൻ (OPEC) 4,148 4,043
5 ഫലകം:Rh|ചൈന 3,845 3,901
6 ഫലകം:Rh|മെക്സിക്കൊ 1 3,707 3,501
7 ഫലകം:Rh|കാനഡ 2 3,288 3,358
8 ഫലകം:Rh|ഐക്യ അറബ് എമിറേറ്റുകൾ (OPEC) 2,945 2,948
9 ഫലകം:Rh|വെനിസ്വേല (OPEC) 1 2,803 2,667
10 ഫലകം:Rh|കുവൈത്ത് (OPEC) 2,675 2,613
11 ഫലകം:Rh|നോർവെ 1 2,786 2,565
12 ഫലകം:Rh|നൈജീരിയ (OPEC) 2,443 2,352
13 ഫലകം:Rh|ബ്രസീൽ 2,166 2,279
14 ഫലകം:Rh|അൾജീരിയ (OPEC) 2,122 2,173
15 ഫലകം:Rh|ഇറാഖ് (OPEC) 3 2,008 2,094
16 ഫലകം:Rh|ലിബിയ (OPEC) 1,809 1,845
17 ഫലകം:Rh|അംഗോള (OPEC) 1,435 1,769
18 ഫലകം:Rh|യുണൈറ്റഡ് കിങ്ഡം 1,689 1,690
19 ഫലകം:Rh|കസാഖിസ്ഥാൻ 1,388 1,445
20 ഫലകം:Rh|ഖത്തർ (OPEC) 1,141 1,136
21 ഫലകം:Rh|ഇന്തോനേഷ്യ 1,102 1,044
22 ഫലകം:Rh|ഇന്ത്യ 854 881
23 ഫലകം:Rh|അസെർബൈജാൻ 648 850
24 ഫലകം:Rh|അർജന്റീന 802 791
25 ഫലകം:Rh|ഒമാൻ 743 714
26 ഫലകം:Rh|മലേഷ്യ 729 703
27 ഫലകം:Rh|ഈജിപ്ത് 667 664
28 ഫലകം:Rh|ഓസ്ട്രേലിയ 552 595
29 ഫലകം:Rh|കൊളംബിയ 544 543
30 ഫലകം:Rh|ഇക്വഡോർ (OPEC) 536 512
31 ഫലകം:Rh|സുഡാൻ 380 466
32 ഫലകം:Rh|സിറിയ 449 446
33 ഫലകം:Rh|ഇക്വറ്റോറിയൽ ഗിനി 386 400
34 ഫലകം:Rh|യമൻ 377 361
35 ഫലകം:Rh|വിയറ്റ്നാം 362 352
36 ഫലകം:Rh|തായ്‌ലാന്റ് 334 349
37 ഫലകം:Rh|ഡെന്മാർക്ക് 344 314
38 ഫലകം:Rh|റിപ്പബ്ലിക്ക് ഓഫ് കോംഗോ 247 250
39 ഫലകം:Rh|ഗാബോൺ 237 244
40 ഫലകം:Rh|ദക്ഷിണാഫ്രിക്ക 204 199

ഉറവിടം: U.S. Energy Information Administration ഫലകം:Webarchive

കയറ്റുമതി

Oil exports by country in 2022

In order of net exports in 2006 in thousand bbl/d and thousand /d:

# കയറ്റുമതി രാഷ്ട്രങ്ങൾ(2006) (103bbl/d) (103m3/d)
1 ഫലകം:Rh|സൗദി അറേബ്യ (OPEC) 8,651 1,376
2 ഫലകം:Rh|റഷ്യ 1 6,565 1,044
3 ഫലകം:Rh|നോർവെ 1 2,542 404
4 ഫലകം:Rh|ഇറാൻ (OPEC) 2,519 401
5 ഫലകം:Rh|ഐക്യ അറബ് എമിറേറ്റുകൾ (OPEC) 2,515 400
6 ഫലകം:Rh|വെനിസ്വേല (OPEC) 1 2,203 350
7 ഫലകം:Rh|കുവൈറ്റ്‌ (OPEC) 2,150 342
8 ഫലകം:Rh|നൈജീരിയ (OPEC) 2,146 341
9 ഫലകം:Rh|അൾജീറിയ (OPEC) 1 1,847 297
10 ഫലകം:Rh|മെക്സിക്കോ 1 1,676 266
11 ഫലകം:Rh|ലിബിയ (OPEC) 1 1,525 242
12 ഫലകം:Rh|ഇറാഖ്‌ (OPEC) 1,438 229
13 ഫലകം:Rh|അംഗോള (OPEC) 1,363 217
14 ഫലകം:Rh|ഖസാഖ്‌സ്ഥാൻ 1,114 177
15 ഫലകം:Rh|കാനഡ 2 1,071 170

ഉറവിടം: US Energy Information Administration

അവലംബം

ഫലകം:Reflist

പുറം കണ്ണികൾ

ഫലകം:Commons

  1. 1.0 1.1 ഫലകം:Cite book
  2. ഫലകം:Cite web
  3. "Crude oil is made into different fuels"
  4. EIA reserves estimates
  5. ഫലകം:Cite web
  6. Heat of Combustion of Fuels
  7. Keith A. Kvenvolden “Organic geochemistry – A retrospective of its first 70 years” Organic Geochemistry 37 (2006) 1–11. ഫലകം:DOI
  8. U.S. Energy Information Administration. Excel file RecentPetroleumConsumptionBarrelsperDay.xls from web page http://tonto.eia.doe.gov/dnav/pet/pet_pri_wco_k_w.htm (direct link: http://www.eia.doe.gov/emeu/international/RecentPetroleumConsumptionBarrelsperDay.xls) "Table Posted: November 7, 2008"
  9. From DSW-Datareport 2006 ("Deutsche Stiftung Weltbevölkerung")
  10. One cubic metre of oil is equivalent to 6.28981077 barrels of oil
  11. ഫലകം:Cite web
  12. IndexMundi. South Korea Population - Demographics. "48,846,823" ... "July 2006 est." Retrieved 2008-11-11
  13. Sources vary: 24,600,000 from ഫലകം:Cite web; while IndexMundi listed a July 2006 estimate of 27,019,73: ഫലകം:Cite web
  14. IndexMundi. France Population - Demographics. "60,876,136" ... "July 2006 est." Retrieved 2008-11-11
  15. IndexMundi. United Kingdom Population - Demographics. "60,609,153" ... "July 2006 est." Retrieved 2008-11-11
  16. IndexMundi. Italy Population - Demographics. "58,133,509" ... "July 2006 est." Retrieved 2008-11-11
  17. IndexMundi. Iran Population - Demographics. "68,688,433" ... "July 2006 est." Retrieved 2008-11-11
  18. http://www.eia.doe.gov/emeu/aer/pdf/pages/sec11_10.pdf
"https://ml.wiki.beta.math.wmflabs.org/w/index.php?title=പെട്രോളിയം&oldid=79" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്