പ്രകാശം

testwiki സംരംഭത്തിൽ നിന്ന്
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

ഫലകം:Prettyurl

സൂര്യപ്രകാശത്തിൽ തിളങ്ങുന്ന മേഘം

ഫലകം:Wiktionary മനുഷ്യനേത്രത്തിന് സംവേദനം ചെയ്യാവുന്ന നിശ്ചിത ആവൃത്തി മേഖലയിലുള്ള വിദ്യുത്കാന്തിക വികിരണങ്ങളാണ്‌ പ്രകാശം അല്ലെങ്കിൽ ദൃശ്യപ്രകാശം. ഒരു ഊർജരൂപമാണ് പ്രകാശം . ഏതാണ്ട് 400 മുതൽ 700 നാനോമീറ്റർ തരംഗദൈർഘ്യമുള്ള വിദ്യുത്കാന്തിക പ്രസരണങ്ങളാണ്‌ ദൃശ്യപ്രകാശത്തിൽ ഉൾപ്പെടുന്നത് . എങ്കിലും ഭൗതികശാസ്ത്രത്തിൽ വിദ്യുത്കാന്തിക സ്പെക്ട്രത്തെ(വിദ്യുത്കാന്തിക വർണ്ണരാജി) മുഴുവനായും പ്രകാശം എന്ന പദം കൊണ്ട് സൂചിപ്പിക്കാറുണ്ട്[1].

നമ്മുടെ കണ്ണിനു തിരിച്ചറിയാൻ പറ്റുന്ന ഏക വിദ്യുത്കാന്തികതരംഗമാണ്‌ ദൃശ്യപ്രകാശം. വിദ്യുത്കാന്തികവർണ്ണരാജിയിലെ വളരെ ചെറിയൊരു ഭാഗം മാത്രമാണു ദൃശ്യപ്രകാശം എങ്കിലും ഇതിന്റെ സഹായത്തോടെയാണ് മറ്റെല്ലാ തരംഗങ്ങളുടേയും പഠനം മനുഷ്യൻ നടത്തുന്നത് . ഇക്കാരണങ്ങളാൽ മനുഷ്യരെ സംബന്ധിച്ചിടത്തോളം ഏറ്റവും പ്രധാനപ്പെട്ട വിദ്യുത്കാന്തികതരംഗം ആണു ദൃശ്യപ്രകാശം.

ഒരേ സമയം തന്നെ കണികകളുടെയും തരംഗത്തിന്റെയും സ്വഭാവം കാണിക്കുന്ന ഫോട്ടോണുകൾ എന്ന മൗലിക കണങ്ങൾ കൊണ്ടാണ്‌ പ്രകാശം നിർമ്മിച്ചിരിക്കുന്നത്.

പ്രകാശം ഒരേ സമയം തന്നെ കണികകളുടെയും തരംഗത്തിന്റെയും സ്വഭാവം കാണിക്കുന്നു. പ്രകാശത്തിന്റെ ഈ സ്വഭാവ സവിശേഷതയെ ദ്വൈതസ്വഭാവം എന്ന് പറയുന്നു. പ്രകാശത്തെക്കുറിച്ചുള്ള പഠനത്തിന്‌, പ്രകാശശാസ്ത്രം (ഒപ്ടിക്സ്) എന്ന് പറയുന്നു. ഭൗതികശാസ്ത്രത്തിലെ ഒരു പ്രധാന പഠനമേഖലയാണിത്.

ചരിത്രം

Decorative Table Lamp

ഭൂമിയിൽ ജീവൻറെ നിലനിൽപ്പിന് ആധാരം തന്നെ സൂര്യനിൽനിന്നുള്ള പ്രകാശമാണ് . അതിപ്രാചീനകാലം മുതൽ പ്രകാശം സംബന്ധിച്ച് മനുഷ്യൻറെ അന്വേഷണം ഉണ്ടായിട്ടുണ്ട് . മറ്റ് പല പ്രകൃതിപ്രതിഭാസങ്ങളേയും പോലെ സൂര്യനെ ആരാധിക്കുന്നതിലേക്ക് മനുഷ്യനെ എത്തിച്ചതും ഇപ്രകാരമാണ് . എന്നാൽ ശാസ്ത്രം പുരോഗമിച്ചതോടെ വിവിധ സിദ്ധാന്തങ്ങൾ പ്രകാശം സംബന്ധിച്ചുണ്ടായി .

പ്രകാശസ്രോതസ്സുകൾ

പ്രപഞ്ചത്തിലെ പ്രധാന പ്രകാശസ്രോതസ്സുകൾ താപോർജ്ജത്തിൽ നിന്നും പ്രകാശം ഉത്പാദിപ്പിക്കുന്ന ബ്ലാക്ക് ബോഡികളാണ്‌. സൂര്യൻ അടക്കമുള്ള നക്ഷത്രങ്ങൾ ബ്ലാക്ക് ബോഡികൾക്ക് ഉദാഹരണങ്ങളാണ്‌. നാം നിത്യോപയോഗത്തിനായി വൈദ്യുതോർജ്ജത്തെ പ്രകാശോർജ്ജമാക്കി മാറ്റുന്നു. എൽ.ഇ.ഡി, വാതക വിളക്കുകൾ(നിയോൺ ലാമ്പ് പോലുള്ളവ), ലേസർ എന്നിവയും പ്രകാശസ്രോതസ്സുകളായി ഉപയോഗിക്കാറുണ്ട്.നാം നിത്യോപയോഗത്തിനായി വൈദ്യുതോർജ്ജത്തെ പ്രകാശോർജ്ജമാക്കി മാറ്റുന്നു. എൽ.ഇ.ഡി, വാതക വിളക്കുകൾ(നിയോൺ ലാമ്പ് പോലുള്ളവ), ലേസർ എന്നിവയും പ്രകാശസ്രോതസ്സുകളായി ഉപയോഗിക്കാറുണ്ട്.

ചില രാസപ്രവർത്തനങ്ങളുടെ ഫലമായും പ്രകാശോർജ്ജം സ്വതന്ത്രമാക്കപ്പെടാറുണ്ട്. ഇത് രാസദീപ്തി അഥവാ കെമിലൂമിനസെൻസ്(chemiluminescence) എന്നറിയപ്പെടുന്നു. മിന്നാമിനുങ്ങുപോലുള്ള ചില ജീവജാലങ്ങൾക്ക് പ്രകാശം പുറപ്പെടുവിക്കാനുള്ള കഴിവുണ്ട്. ഈ പ്രതിഭാസത്തെ ജൈവദീപ്തി അഥവാ ബയോലൂമിനസെൻസ്(bioluminescence) എന്നു പറയുന്നു.

പ്രകാശത്തിന്റെ സ്വഭാവം

പ്രകാശത്തിന്റെ സ്വഭാവ സവിശേഷതകൾ വിശദീകരിക്കുന്നതിനായി നിരവധി സിദ്ധാന്തങ്ങൾ പല കാലഘട്ടങ്ങളിലായി ആവിഷ്കരിക്കപ്പെട്ടിട്ടുണ്ട്. പ്രകാശം നേർ രേഖയിൽ സഞ്ചരിക്കുന്ന അതിസൂക്ഷ്മ കണികകളായും തരംഗങ്ങളായും ഒക്കെ കണക്കിലെടുത്തു കൊണ്ടുള്ള സിദ്ധാന്തങ്ങൾ ശാസ്ത്രജ്ഞർ മുന്നോട്ടു വച്ചു .

കണികാസിദ്ധാന്തം

ഫലകം:Main സർ ഐസക് ന്യൂട്ടണാണ്‌ കണികാസിദ്ധാന്തത്തിന്റെ ഉപജ്ഞാതാവ്. ഈ സിദ്ധാന്തപ്രകാരം പ്രകാശം വളരെച്ചെറിയ, നേർരേഖയിൽ സഞ്ചരിക്കുന്ന ഇലാസ്തികകണികകളുടെ പ്രവാഹമാണ്‌. ഒരു റബ്ബർ പന്ത് ചുവരിൽത്തട്ടി തെറിച്ചു പോകുന്നതുപോലെ പ്രകാശകണികകൾ മിനുസമുള്ള പ്രതലത്തിൽത്തട്ടി തെറിച്ചുപോകുന്നുവെന്ന സങ്കല്പമനുസരിച്ചാണ്‌ പ്രതിഫലനം വിശദീകരിക്കപ്പെട്ടത്. അപവർത്തനം വിശദീകരിക്കുവാൻ വേണ്ടി സാന്ദ്രതകുറഞ്ഞ മാധ്യമത്തെക്കാൾ സാന്ദ്രത കൂടിയ മാധ്യമത്തിൽ വേഗതകൂടുതലാണെന്ന് ന്യൂട്ടൺ സിദ്ധാന്തിച്ചു. സാന്ദ്രത കൂടിയ മാധ്യമം പ്രകാശകണികകളെ കൂടുതലായി ആകർഷിക്കുന്നു എന്ന് അദ്ദേഹം കരുതി. പ്രകാശത്തിന്റെ നേർരേഖാസംചരണവും പ്രതിഫലനവും വിസരണവും വിശദീകരിക്കാൻ കഴിഞ്ഞുവെങ്കിലും വ്യതികരണം, വിഭംഗനം, ബ്ലാക്ക് ബോഡി റേഡിയേഷൻ, കളർ വിഷൻ തുടങ്ങിയ പ്രതിഭാസങ്ങൾ വിശദീകരിക്കുന്നതിൽ ഈ സിദ്ധാന്തം പരാജയപ്പെട്ടു.

തരംഗസിദ്ധാന്തം

ഫലകം:Main പതിനേഴാം നൂറ്റാണ്ടിന്റെ മധ്യത്തിൽ, കണികാസിദ്ധാന്തം പൊതുവേ അംഗീകരിക്കപ്പെട്ടിരുന്ന കാലഘട്ടത്തിലാണ്‌ ക്രിസ്‌റ്റ്യൻ ഹൈഗൻസ് തരംഗസിദ്ധാന്തം ആവിഷ്കരിച്ചത്. പ്രപഞ്ചത്തിലെങ്ങും നിറഞ്ഞിരിക്കുന്ന ഈഥർ എന്ന സാങ്കല്പിക മാധ്യമത്തിൽക്കൂടി, ദ്രവ്യതരംഗരൂപത്തിലാണ്‌ പ്രകാശം സഞ്ചരിക്കുന്നതെന്നായിരുന്നു ഹൈഗൻസിന്റെ വാദം.പ്രകാശത്തിന്റെ പ്രവേഗം സഞ്ചരിക്കുന്ന മാധ്യമത്തിന്റെ സാന്ദ്രതയ്ക്കനുസൃതമായി വ്യത്യാസപ്പെടുന്നു എന്ന് ഗണിതശാസ്ത്രസങ്കേതങ്ങളുപയോഗിച്ച് തെളിയിക്കാനും അദ്ദേഹത്തിനു കഴിഞ്ഞു. 1800-ൽ തോമസ് യംഗ് വ്യതികരണം കണ്ടെത്തിയതോടെ തരംഗസിദ്ധാന്തം പരക്കെ അംഗീകരിക്കപ്പെട്ടു. വ്യതികരണം കൂടാതെ, പ്രകാശത്തിന്റെ പോളറൈസേഷൻ, വിസരണം എന്നീ സവിശേഷതകളും വിശദീകരിയ്ക്കാൻ തരംഗസിദ്ധാന്തത്തിനു കഴിഞ്ഞു. എ.എ.മൈക്കൽസൺ മൈക്കൽസൺ മോർലേ പരീക്ഷണത്തിലൂടെ പ്രകാശത്തിനു സഞ്ചരിക്കാൻ ഈഥറിന്റെ ആവശ്യമില്ലെന്നു തെളിയിച്ചത് ഈ സിദ്ധാന്തത്തിനു തിരിച്ചടിയായി.

വൈദ്യുതകാന്തികതരംഗ സിദ്ധാന്തം

ഫലകം:Main 1862-ൽ ജെയിംസ് ക്ലാർക്ക് മാക്സ്‌വെൽ പ്രകാശം വൈദ്യുതകാന്തികതരംഗമാണെന്ന് അഭിപ്രായപ്പെട്ടു. വൈദ്യുത-കാന്തിക മണ്ഡലങ്ങളുടെ സം‌യോജിതരൂപമായ പ്രകാശതരംഗത്തിൽ ഈ രണ്ടു മണ്ഡലങ്ങളും പരസ്പരം ലംബമായിരിക്കുന്നതോടൊപ്പം തരം‌ഗത്തിന്റെ സഞ്ചാരദിശയ്ക്കും ലംബമായിരിക്കുമെന്ന് അദ്ദേഹം തെളിയിച്ചു. പ്രകാശത്തിന്റെ സ്വഭാവം വ്യക്തമാക്കുന്ന ഒരു കൂട്ടം ഗണിതശാസ്ത്രമവാക്യങ്ങൾ, മാക്സ്‌വെൽ സമവാക്യങ്ങൾ എന്നപേരിൽ അദ്ദേഹം പ്രസിദ്ധപ്പെടുത്തി. ഹെൻറിച്ച് ഹെട്സ് പ്രകാശ-റേഡിയോതരംഗങ്ങൾ തമ്മിലുള്ള സാദൃശ്യം പരീക്ഷണത്തിലൂടെ തെളിയിച്ചതോടെ പ്രകാശത്തിന്റെ വൈദ്യുതകാന്തികതരംഗ സിദ്ധാന്തം അംഗീകരിക്കപ്പെട്ടു.

ക്വാണ്ടം സിദ്ധാന്തം

ഫലകം:Main


പത്തൊൻപതാം നൂറ്റാണ്ടിന്റെ അന്ത്യപാദത്തിലും പ്രകാശത്തിന്റെ പല സ്വഭാവ സവിശേഷതകളും ശാസ്ത്രലോകത്തിന്‌ അജ്ഞാതമായിത്തന്നെ അവശേഷിച്ചു. ബ്ലാക്ക് ബോഡി റേഡിയേഷൻ പ്രതിഭാസമായിരുന്നു അവയിൽ ഏറ്റവും പ്രധാനപ്പെട്ടത്. 1900-ൽ മാക്സ് പ്ലാങ്ക് ക്വാണ്ടം സിദ്ധാന്തം ആവിഷ്കരിച്ചതോടെ, ആ സമസ്യയ്ക്ക് ഉത്തരമായി. പ്രകാശം കണികകളുടെയു തരംഗങ്ങളുടെയും സ്വഭാവമുള്ള ഊർജ്ജപ്പൊതികൾ, അഥവാ ഫോട്ടോണുകളുടെ രൂപത്തിലാണ്‌ സഞ്ചരിക്കുന്നതെന്നായിരുന്നു അദ്ദേഹത്തിന്റെ വാദം. ഓരോ ഫോട്ടോണും നിശ്ചിത ഊർജ്ജമുള്ളവയാണെന്നും അദ്ദേഹം അനുമാനിച്ചു.ഫോട്ടോണിന്റെ ഊർജ്ജം ആവൃത്തിയ്ക്ക് ആനുപാതികമായിരിക്കുമെന്നും അവ തമ്മിലുള്ള ബന്ധം,

E=hνഎന്ന സമവാക്യം കൊണ്ട് സൂചിപ്പിക്കാമെന്നും അദ്ദേഹം തെളിയിച്ചു.

പ്രകാശത്തിന്റെ ദ്വൈതസ്വഭാവം

'ഒരേസമയം തന്നെ കണികകളുടെയും തരംഗങ്ങളുടെയും സ്വഭാവത്തോട് കൂടിയ ഒരു വൈദ്യുത കാന്തിക ഊർജ്ജമാണ്‌ പ്രകാശം'

ഇതാണ് പ്രകാശത്തിന്റെ ദ്വൈത സ്വഭാവം.1905-ൽ ക്വാണ്ടം സിദ്ധാന്തത്തിന്റെ സഹായത്തോടെ ആൽബർട്ട് ഐൻസ്റ്റീൻ ഫോട്ടോ ഇലക്ട്രിക് പ്രതിഭാസത്തിന്‌‍ വിശദീകരണം നൽകി. 1924-ൽ ലൂയിസ് ഡിബ്രോളി കണികകളുടെ ദ്വൈതസ്വഭാവത്തെക്കുറിച്ച് പഠിക്കുകയും, ഡിബ്രോളി തരംഗദൈർഘ്യം എന്ന ആശയം അവതരിപ്പിക്കുകയും ചെയ്തു. 1927-ൽ ഡേവിസൺ-ജെർമർ പരീക്ഷണത്തിലൂടെ ഇലക്ട്രോണുകളുടെയും ഫോട്ടോണുകളുടെയും ദ്വൈതസ്വഭാവം തെളിയിച്ചു. ഈ കണ്ടുപിടിത്തങ്ങൾക്ക് 1921-ൽ ‍ഐൻസ്റ്റീനും 1929-ൽ ഡിബ്രോളിയും നോബൽ സമ്മാനം നേടി.

സവിശേഷതകൾ

പ്രകാശതീവ്രത

പ്രകാശത്തിന്റെ തീവ്രത(Intensity) അതിന്റെ ആയതിയുടെ വർഗ്ഗത്തിന് ആനുപാതികമായിരിക്കും. ഒരു പ്രകാശസ്രോതസ്സിൽ നിന്ന് ഒരു സെക്കന്റിൽ പുറപ്പെടുന്ന പ്രകാശരശ്മികളുടെ തീവ്രത, പ്രകാശത്തിന്റെ പതനകോണുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു.

പ്രകാശത്തിന്റെ തീവ്രതയുടെ ഏകകം ലൂമൻ(Lumen) ആണ്‌.

പ്രകാശപ്രവേഗം

ഫലകം:Main പ്രകാശത്തിന്റെ വേഗത ശൂന്യതയിൽ 299,792,458 m/s (ഏതാണ്ട് 186,282.397 മൈൽസ് പ്രതി സെക്കന്റ്) ആണ്‌. പ്രകാശത്തിന്റെ വേഗത അത് സഞ്ചരിക്കുന്ന മാധ്യമത്തിനനുസരിച്ച് വ്യത്യാസപ്പെട്ടിരിക്കും.

പ്രതിഫലനം

പ്രകാശരശ്മികൾ ഒരു അതാര്യവസ്തുവിൽത്തട്ടി പ്രതിഫലിക്കുന്നതിനെ പ്രകാശപ്രതിഫലനം എന്നു പറയുന്നു. കണ്ണാടിയിൽ പ്രതിബിംബം രൂപപ്പെടുന്നത് പ്രതിഫലനം സംഭവിച്ച രശ്മികൾ നമ്മുടെ കണ്ണിലെത്തുമ്പോഴാണ്‌.

അപവർത്തനം

ജലത്തിനെ പ്രതലത്തിൽ വച്ച് പ്രകാശത്തിന്‌ അപവർത്തനം സംഭവിക്കുന്നതിനാൽ കുഴലിന്റെ ജലത്തിനുള്ളിലെ ഭാഗം വളഞ്ഞതായി കാണപ്പെടുന്നു.

ഫലകം:Main


പ്രകാശം ഒരു മാധ്യമത്തിൽ നിന്ന് സാന്ദ്രതാവ്യത്യാസമുള്ള മറ്റൊരു മാധ്യമത്തിലേക്ക് പ്രവേശിക്കുമ്പോൾ ,അതിന്റെ സഞ്ചാരദിശയ്ക്ക് വ്യതിയാനം സംഭവിക്കുന്നു. ഈ പ്രതിഭാസത്തെ അപവർത്തനം(refraction) എന്നു പറയുന്നു. പ്രകാശത്തിന്റെ ശൂന്യതയിലെ വേഗതയും, സഞ്ചരിക്കുന്ന മാധ്യമത്തിലെ വേഗതയും തമ്മിലുള്ള അനുപാതം അപവർ‍ത്തനസ്ഥിരാങ്കം(Refractive index) എന്നറിയപ്പെടുന്നു.


അപവർത്തനസ്ഥിരാങ്കം,n=cvp

പ്രകാശരശ്മി ഒരു പ്രതലത്തിൽ പതിക്കുമ്പോഴുണ്ടാകുന്ന പതനകോൺ i യും, പ്രതിപതനകോൺ r ഉം ആയാൽ അപവർത്തനസ്ഥിരാങ്കം,


n=sinisinr.

ഈ നിയമം അപവർത്തനനിയമം അഥവാ സ്നെൽ നിയമം എന്നറിയപ്പെടുന്നു.

വിഭംഗനം

ഫലകം:Main

സൂക്ഷ്മങ്ങളായ അതാര്യവസ്തുക്കളെച്ചുറ്റി പ്രകാശം വളയുകയോ വ്യാപിക്കുകയോ ചെയ്യുന്ന പ്രതിഭാസമാണ്‌ വിഭംഗനംഫലകം:തെളിവ് (Diffraction). നിഴലുകളുടെ അരികുകൾ ക്രമരഹിതമായി കാണപ്പെടുന്നതിനു കാരണം വിഭംഗനമാണ്‌. ഒരു അതാര്യ വസ്തുവിന്റെ അരികിലൂടെ കടന്നുപോകുമ്പോൾ ഏതാനും രശ്മികൾ ആ വസ്തുവിനെ ചുറ്റി നിഴലിന്റെ ഭാഗത്തേക്ക് വ്യാപിക്കുന്നു. വിഭംഗനം മൂലമുണ്ടാകുന്ന ഇരുണ്ടതും തെളിഞ്ഞതുമായ ശ്രേണി വിഭംഗന ശ്രേണി (Diffraction Pattern) എന്നറിയപ്പെടുന്നു.ഈ ശ്രേണിയിൽ പ്രകാശിതമായ ഭാഗത്തു നിന്ന് നിഴലിന്റെ ഭാഗത്തേക്കു പോകുമ്പോൾ പ്രകാശതീവ്രതയിൽ ക്രമമായ മാറ്റം സംഭവിക്കുന്നു. രണ്ടു വിരലുകൾക്കിടയിലുള്ള ഇടുങ്ങിയ വിടവിലൂടെ പ്രകാശിതമായ ഒരു ഭാഗം നിരീക്ഷിച്ചാൽ വിഭംഗന ശ്രേണി കാണാനാവും.ഫ്രഞ്ച് ശാസ്ത്രജ്ഞനായിരുന്ന അഗസ്റ്റിൻ ഫ്രെണൽ ആണ്‌ വിഭംഗനം കണ്ടെത്തിയത്.

വസ്തുക്കളിൽ തട്ടി എക്സ് തരംഗങ്ങൾക്കും പ്രകാശതരംഗങ്ങൾക്കുമുണ്ടാകുന്ന വിഭംഗനം പരലുകളുടെ ഘടനയെക്കുറിച്ച് പഠിക്കാൻ ഉപയോഗിക്കാറുണ്ട്. ഇത് വിഭംഗന വിശ്ലേഷണം(Diffraction Analysis)എന്നറിയപ്പെടുന്നു.

വ്യതികരണം

ഫലകം:Main

സമന്വിതപ്രകാശത്തിന്റെ വ്യതികരണം വ്യക്തമാക്കുന്ന അനിമേഷൻ ചിത്രം.


തരംഗസിദ്ധാന്തമനുസരിച്ച് പ്രകാശം തരംഗരൂപത്തിലാണ്‌ സഞ്ചരിക്കുന്നത്. ഒന്നിൽക്കൂടുതൽ തരംഗങ്ങൾ ഒന്നിച്ച് ഒരേ സ്ഥലത്തെത്തുമ്പോൾ അവയുടെ ഫലങ്ങൾ കൂടിച്ചേരുന്നു. ലളിതമായിപ്പറഞ്ഞാൽ രണ്ട് തരംഗങ്ങൾ അതിവ്യാപനം ചെയ്യുമ്പോൾ അവയുടെ ആയതികൾ(Amplitude) സദിശമായി(Vectorically) സങ്കലനം ചെയ്യപ്പെടുന്നു. ഈ പ്രതിഭാസത്തെ വ്യതികരണം അഥവാ ഇന്റർഫെറൻസ് എന്നു പറയുന്നു. വ്യതികരണം സംഭവിക്കുമ്പോൾ A1 ആയതിയുള്ള ഒരു തരംഗത്തിന്റെ ശൃംഗം(Crust) A2 ആയതിയുള്ള മറ്റൊരു തരംഗത്തിന്റെ ശൃംഗവുമായി ചേരുമ്പോൾ പരിണതതരംഗത്തിന്റെ ആയതി(Resultant amplitude) A1 + A2 ആയിരിക്കും.ആദ്യത്തെ തരംഗത്തിന്റെ ശൃംഗം രണ്ടാമത്തതിന്റെ ഗർത്തവുമായാണ്‌(Trough) ചേരുന്നതെങ്കിൽ പരിണത ആയതി A1 - A2 ആയിരിക്കും.


ഒരു സോപ്പുകുമിളയിലോ ജലത്തിൽ വ്യാപിച്ചു കിടക്കുന്ന എണ്ണയുടെ കനം കുറഞ്ഞ പാളിയിലോ കാണുന്ന വർണങ്ങൾ വ്യതികരണം മൂലമുണ്ടാകുന്നവയാണ്‌. സമന്വിതപ്രകാശത്തിന്റെ തരംഗങ്ങൾ അതിവ്യാപനം ചെയ്യുമ്പോൾ വ്യതികരണശ്രേണിയിൽ അവയുടെ ആപേക്ഷികതീവ്രതയനുസരിച്ച് വ്യത്യസ്ത തരംഗദൈർഘ്യങ്ങൾ(നിറങ്ങൾ) കാണപ്പെടുന്നതാണ്‌ ഇതിനു കാരണം.

പ്രകീർണനം

ഫലകം:Main


പ്രമാണം:PrismAndLight.jpg
A beam of white light (entering upwards from the right) is dispersed into its constituent colors by its passage through a prism. The fainter beam of white light exiting to the upper right has been reflected (without dispersion) off the first surface of the prism.

ഒരു സമന്വിതപ്രകാശം അതിന്റെ ഘടകവർണങ്ങളായിപ്പിരിയുന്ന പ്രതിഭാസമാണ്‌ പ്രകീർണനം. ധവളപ്രകാശം പ്രിസത്തിൽക്കൂടികടന്നുപോകുമ്പോൾ സപ്തവർണങ്ങളായിപ്പിരിയുന്നത് പ്രകാശപ്രകീർണനത്തിന് ഉദാഹരണമാണ്‌. ധവളപ്രകാശം പ്രിസത്തിലേക്കു കടക്കുമ്പോൾ പ്രിസത്തിന്റെ ഇരു മുഖങ്ങളിലും അപവർത്തനം സംഭവിക്കുന്നു. എന്നാൽ ഘടകവർണങ്ങളുടെ തരംഗദൈർഘ്യത്തിലുള്ള വ്യത്യാസം മൂലം വിവിധവർണങ്ങൾക്ക് വിവിധതോതിലാണ്‌ വ്യതിയാനം സംഭവിക്കുന്നത്. ഇത് വർണങ്ങളുടേ വിഘടനത്തിന്‌ കാരണമാകുന്നു.വിഘടിതവർണങ്ങളുടെ ക്രമമായ വിതരണത്തെ പ്രകാശത്തിന്റെ വർണരാജി അഥവാ സ്പെക്ട്രം എന്നു പറയുന്നു.മഴവില്ലിന്റെ സൃഷ്ടിയ്ക്കു നിദാനം അന്തരീക്ഷത്തിലെ ജലകണികകളിൽത്തട്ടി സൂര്യപ്രകാശത്തിനു സംഭവിക്കുന്ന പ്രകീർണനമാണ്‌.


ധവളപ്രകാശത്തെ ഘടകവർണങ്ങളായി വിഭജിക്കുന്നതു പോലെ ഘടകവർണങ്ങൾ സം‌യോജിപ്പിച്ച് ധവളപ്രകാശം സൃഷ്ടിക്കാനും സാധിക്കും.ഘടകവർണങ്ങളെ പ്രിസത്തിൽക്കൂടി കടത്തിവിട്ടാൽ സമന്വിതപ്രകാശം ലഭിക്കും. ഇത്തരത്തിൽ നിറങ്ങളുടെ സം‌യോജനത്തിന്റെ ഫലം കാണിക്കുന്ന മറ്റൊരു ഉപകരണമാണ്‌ ന്യൂട്ടന്റെ വർണപമ്പരം.

വിസരണം

ഫലകം:Main

ഒരു മാധ്യമത്തിലൂടെ പ്രകാശം കടന്നുപോകുമ്പോളുണ്ടാകുന്ന ക്രമരഹിതവും ഭാഗികവുമായ പ്രതിഫലനത്തെയാണ്‌ വിസരണംഫലകം:തെളിവ് എന്നു പറയുന്നത്. അന്തരീക്ഷവായു, ജലം തുടങ്ങിയ മാധ്യമങ്ങളിലൂടെ പ്രകാശം സഞ്ചരിക്കുമ്പോൾ ആ മാധ്യമത്തിലെ തന്മാത്രകളും അവയിൽ തങ്ങിനിൽക്കുന്ന സൂക്ഷ്മങ്ങളായ പൊടിപടലങ്ങളും പ്രകാശതരംഗങ്ങൾക്ക് ഭാഗികമായ തടസ്സം സൃഷ്ടിക്കുന്നു. പ്രകാശത്തിന്റെ ഒരു ഭാഗം പൊടിപടലങ്ങളാലും തന്മാത്രകളാലും എല്ലാ ദിശകളിലേക്കും പ്രതിഫലിക്കപ്പെടുന്നു.മാധ്യമത്തിലെ സൂക്ഷ്മകണങ്ങൾ തരംഗദൈർഘ്യം കുറഞ്ഞ പ്രകാശതരംഗങ്ങൾക്ക് ഗണ്യമായ തടസ്സം സൃഷ്ടിക്കുമ്പോൾ ദീർഘപ്രകാശതരംഗങ്ങൾക്ക് കുറഞ്ഞ തടസ്സമേ സൃഷ്ടിക്കുന്നുള്ളൂ. അതായത് ഹ്രസ്വതരംഗങ്ങളുടെ വിസരണതോത് ദീർഘതരംഗങ്ങളെക്കാൾ കൂടുതലായിരിക്കും.

ആകാശത്തിന്റെ നീലനിറത്തിനും ഉദയസൂര്യന്റെയും അസ്തമയസൂര്യന്റെയും ചുവപ്പുനിറത്തിനും കാരണം സൂര്യപ്രകാശത്തിന്റെ വിസരണമാണ്‌.

ധ്രുവണം

ഫലകം:Main

പ്രകാശതരംഗങ്ങളിൽ കണികകൾക്ക് സാധ്യമായ എല്ലാ ദിശകളിലും ചലിക്കാനാവും . എന്നാൽ ചില പ്രത്യേകതരം പരലുകളിൽക്കൂടി( polarizer‌)കടത്തി വിട്ട് അവയുടെ ചലനം ഒരു പ്രത്യേക പ്രതലത്തിൽ മാത്രമായി ചുരുക്കാൻ സാധിക്കും.

പ്രകാശശാസ്ത്രം

ഫലകം:Main പ്രകാശത്തിന്റെ സ്വഭാവം തരംഗസവിശേഷതകൾ എന്നിവ പഠനവിധേയമാക്കുന്ന ഭൗതികശാസ്ത്രശാഖയാണ്‌ പ്രകാശശാസ്ത്രം അഥവാ ഒപ്റ്റിക്സ്. പ്രകാശശാസ്ത്രത്തെ ഉദാത്ത പ്രകാശികം(Classical Optics), നവീന പ്രകാശികം(Modern Optics) എന്നിങ്ങനെ രണ്ടായി തിരിക്കാം . ക്ലാസിക്കൽ പ്രകാശികത്തിന് രണ്ട് വിഭാഗങ്ങളുണ്ട് - കിരണ പ്രകാശികം (Ray Optics), തരംഗ പ്രകാശികം (Wave Optics) എന്നിവ. ആധുനിക പ്രകാശികം പ്രധാനമായും ക്വാണ്ടം പ്രകാശികമാണ്. ഫോട്ടോണിക സിദ്ധാന്തങ്ങളും , ഹോളോഗ്രാഫി, ലേസർ മുതലായവയും ആധുനിക പ്രകാശികത്തിന്റെ പ്രതിപാദ്യങ്ങളാണ്.

പ്രകാശിക ഉപകരണങ്ങൾ

കണ്ണ്

ഫലകം:Main

ഏറ്റവും പരിചിതമായ പ്രകാശിക ഉപകരണമാണ്‌ കണ്ണ്.ഒരു വസ്തുവിൽത്തട്ടി പ്രതിഫലിച്ചെത്തുന്ന പ്രകാശരശ്മികൾ കണ്ണിലെ ലെൻസ് മുഖേന റെറ്റിനയിൽ കേന്ദ്രീകരിക്കപ്പെടുകയും, റെറ്റിനയിലെ നാഡീകോശങ്ങൾ കാഴ്ചയെന്ന അനുഭൂതിയുണ്ടാക്കുകയും ചെയ്യുന്നു.

ഛായാഗ്രാഹി

ഫലകം:Main വസ്തുവിൽത്തട്ടി പ്രതിഫലിച്ചെത്തുന്ന പ്രകാശം പ്രത്യേക ഫോക്കൽ ലെങ്തുള്ള ലെൻസിൽക്കൂടി ഫിലിമിൽ കേന്ദ്രീകരിച്ച് വസ്തുവിന്റെ ചിത്രമെടുക്കാൻ സഹായിക്കുന്ന ഉപകരണമാണ്‌ ഛായാഗ്രാഹി അഥവാ ഫോട്ടോഗ്രഫിക് ക്യാമറ.

സൂക്ഷ്മദർശിനി

ഫലകം:Main

സൂക്ഷ്മവസ്തുക്കളുടെ നിരീക്ഷണത്തിനുള്ള ഉപകരണമാണ്‌ സൂക്ഷ്മദർശിനി അഥവാ മൈക്രോസ്കോപ്പ്.

ദൂരദർശിനി

ഫലകം:Main

അകലെയുള്ള വസ്തുക്കളെയോ വിദ്യുത്-കാന്തിക തരംഗങ്ങളെയോ നിരീക്ഷിക്കാൻ ഉപയോഗിക്കുന്ന ഉപകരണമാണ്‌ ദൂരദർശിനി അഥവാ ടെലസ്കോപ്പ്.


ജ്യോതിശാസ്ത്രവും ദൃശ്യപ്രകാശതരംഗവും

ജ്യോതിശാസ്ത്രപഠനത്തിനു റേഡിയോ തരംഗം ഉപയോഗിക്കുന്നതിനു മുൻപ് അതുവരെ നമ്മൾ പ്രപഞ്ചത്തെക്കുറിച്ച് നേടിയ അറിവ് എല്ലാം ദൃശ്യപ്രകാശ തരംഗങ്ങൾ ഉപയോഗിച്ചാണ്.

മനുഷ്യനേത്രം അതിൽ തന്നെ ഒരു അസാമാന്യ യന്ത്രം ആണെങ്കിലും ജ്യോതിശാസ്ത്രത്തിന്റെ അനന്തമായ സാധ്യതകളെ തിരയുവാൻ അത് അപര്യാപ്തമാണ്. ഗ്രഹങ്ങളും നക്ഷത്രങ്ങളും ഒക്കെ മനുഷ്യനേത്രത്തിനു ചെന്നു എത്താവുന്നതിലും അകലങ്ങളിൽ ഇരുന്നു മനുഷ്യനിൽ നിന്നു അതിന്റെ യഥാർത്ഥ രൂപവും സ്വരൂപവും മറച്ചു പിടിക്കുന്നു.

ഏതാണ്ട് പതിനഞ്ചാം നൂറ്റാണ്ടു വരെ നഗ്ന നേത്രം മാത്രമേ മനുഷ്യനെ ആകാശ നിരീക്ഷണത്തിനു സഹായിയായി ഉണ്ടായിരുന്നുള്ളൂ. അതിനു ശേഷം മനുഷ്യനെ ആകാശ നിരീക്ഷണത്തിനു സഹായിക്കാൻ പല ഉപാധികളും എത്തി. അങ്ങനെ മനുഷ്യനെ സഹായിച്ച ഒരു പ്രധാന ഉപാധി ആയിരുന്നു ദൂരദർശിനി. 1609-ൽ ഗലീലിയോ ഗലീലി ആണ് ദൂരദർശിനി കണ്ടെത്തിയത്. വിവിധ തരത്തിലും വലിപ്പത്തിലും ഉള്ള ദൃശ്യപ്രകാശ ദൂരദർശിനികൾ (optical telescopes) അതിനു ശേഷം നമ്മെ ആകാശനിരീക്ഷണത്തിനു സഹായിക്കാനെത്തി. കാലം പുരോഗമിച്ചതോടെ ഭൂമിയിൽ നിന്നുള്ള നിരീക്ഷണത്തിന്റെ പരിമിതികൾ മനുഷ്യൻ മനസ്സിലാക്കി. അങ്ങനെ അവൻ ദൃശ്യപ്രകാശ ദൂരദർശിനികൾ അന്തരീക്ഷത്തിനു പുറത്ത് സ്ഥാപിച്ചും ആകാശനിരീക്ഷണം നടത്തി.

അവലംബം

ഫലകം:EMSpectrum

ഫലകം:അപൂർണ്ണം

"https://ml.wiki.beta.math.wmflabs.org/w/index.php?title=പ്രകാശം&oldid=57" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്