വൃത്തസ്തൂപികാഖണ്ഡം

testwiki സംരംഭത്തിൽ നിന്ന്
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

ഫലകം:Prettyurl ഒരു വൃത്തസ്തൂപികയെ ഒരു പ്രതലം ഖണ്ഡിക്കുമ്പോഴുണ്ടാകുന്ന വക്രരേഖാഖണ്ഡമാണ് കോണികം അഥവാ വൃത്തസ്തൂപപരിച്ഛേദം (conic section). ഇത് പരവലയ(parabola)മോ ദീർഘവൃത്ത(ellipse)മോ അധിവലയ(hyperbola)മോ ആവാം.

വ്യത്യസ്ത കോണികങ്ങൾ:
1. പരവലയം
2. വൃത്തവും, ദീർഘവൃത്തവും
3. അധിവലയം

ഒരേ പ്രതലത്തിൽ സ്ഥിതിചെയ്യുന്ന ഒരു നിയതരേഖ(directrix)യെയും പ്രസ്തുതരേഖയ്ക്കു പുറത്തുള്ള ഒരു കേന്ദ്രബിന്ദു(focus)വിനെയും ആധാരമാക്കിയാണ് കോണികങ്ങളെ നിർവചിക്കാറ്. നിയതരേഖയിൽ നിന്നും കേന്ദ്രബിന്ദുവിൽ നിന്നുമുള്ള അകലങ്ങൾ തമ്മിലുള്ള അനുപാതം സ്ഥിരസംഖ്യ ആകത്തക്കവിധത്തിൽ സഞ്ചരിക്കുന്ന ബിന്ദുവിന്റെ പാത ഒരു കോണിക് സെക്ഷൻ ആയിരിക്കും.

പ്രത്യേകതകൾ

കോണികങ്ങളെ മൂന്നു വിഭാഗങ്ങളായി തിരിക്കാം- ദീർഘവൃത്തം, പരവലയം, അധിവലയം, എന്നിങ്ങനെ. ദീർഘവൃത്തത്തിന്റെ ഒരു പ്രത്യേകരൂപമാണ് വൃത്തം. വൃത്തത്തെ നാലാമത്തെ വിഭാഗമായും ചിലർ കണക്കാക്കാറുണ്ട്. വൃത്തസ്തൂപികയെ ഖണ്ഡിക്കുന്ന പ്രതലവും സ്തൂപികയുടെ അക്ഷവും തമ്മിലുള്ള കോണിനനുസൃതമായാണ് കോണികങ്ങൾ രൂപപ്പെടുന്നത്.

കോണികം സമവാക്യം eccentricity (e) linear eccentricity (c) semi-latus rectum () focal parameter (p)
വൃത്തം x2+y2=a2 0 0 a
ദീർഘവൃത്തം x2a2+y2b2=1 1b2a2 a2b2 b2a b2a2b2
പരവലയം y2=4ax 1 a 2a 2a
അധിവലയം x2a2y2b2=1 1+b2a2 a2+b2 b2a b2a2+b2
"https://ml.wiki.beta.math.wmflabs.org/w/index.php?title=വൃത്തസ്തൂപികാഖണ്ഡം&oldid=217" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്