ക്രമഗുണിതം

testwiki സംരംഭത്തിൽ നിന്ന്
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

ഫലകം:Prettyurl

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5,040
8 40,320
9 362,880
10 3,628,800
11 39,916,800
12 479,001,600
13 6,227,020,800
14 87,178,291,200
15 1,307,674,368,000
20 2,432,902,008,176,640,000
25 15,511,210,043,330,985,984,000,000
50 3.04140932... × 1064
70 1.19785717... × 10100
450 1.73336873... × 101,000
1754 1.979262... × 104,930
3,249 6.41233768... × 1010,000
25,206 1.205703438... × 10100,000
47,176 8.4485731495... × 10200,001
100,000 2.8242294079... × 10456,573
1,000,000 8.2639316883... × 105,565,708
9.99... × 10304 1 × 103.045657055180967... × 10307

ഫലകം:Caption

ഋണമല്ലാത്ത പൂർണ്ണസംഖ്യയും അതിനേക്കാൾ ചെറിയ എല്ലാ പൂർണ്ണസംഖ്യകളും തമ്മിൽ ഗുണിച്ചാൽ കിട്ടുന്ന ഫലമാണ് ആ പൂർണ്ണസംഖ്യയുടെ ഫാക്ടോറിയൽ (Factorial) അഥവാ ക്രമഗുണിതം. ഗണിതത്തിൽ n എന്ന സംഖ്യയുടെ ഫാക്ടോറിയലിനെ സൂചിപ്പിക്കുന്നത് n! എന്നാണ്. ഉദാഹരണങ്ങൾ:

5!=1×2×3×4×5=120 
6!=1×2×3×4×5×6=720. 

നിർവ്വചനം

ഫാക്ടോറിയലിന്റെ ഔപചാരിക നിർവ്വചനം

n!=k=1nkn

അല്ലെങ്കിൽ തുടർച്ചയായുള്ള നിർവ്വചനം

n!={1 if n=0n(n1)! if n>0n.

രണ്ട് നിർവ്വചനങ്ങളിലും ഇതുകൂടി ഉൾപ്പെട്ടിരിക്കുന്നു

0!=1 

ശൂന്യമായ സംഖ്യകളുടെ തുക 1 ആണെന്ന വസ്തുത ഇതിൽ ഉൾപ്പെടുത്തിയിരിക്കുന്നു. ഫാക്ടോറിയലിന് പ്രയോജനപ്രദമാണ് ഈ വസ്തുത, കാരണം:

  • (n+1)!=n!×(n+1) എന്ന ആവർത്തന ബന്ധം (recurrence relation) n>0 എന്നതിന് (പൂജ്യത്തിനു മുകളിലുള്ള എല്ലാ സംഖ്യകൾക്കും) സാധ്യമാകുന്നു;
  • അനന്ത ബഹുപദങ്ങൾക്കുള്ള (polynomials) വ്യഞ്ജകങ്ങളുടെ (expressions) ലളിതമായ രൂപവത്കരണത്തിനി ഇത് സഹായിക്കുന്നു, ഉദാ: ex=n=0xnn!;
  • കോമ്പിനേറ്റോറിക്സിലെ പല സമകങ്ങളേയും (identities) പൂജ്യം വലിപ്പങ്ങളിലും ഇത് സാധൂകരിക്കുന്നു. ഒരു ശൂന്യഗണത്തിൽ നിന്ന് 0 അംഗങ്ങളെ എടുക്കാവുന്ന വഴി നോക്കുക: (00)=0!0!0!=1.

അവലംബം

"https://ml.wiki.beta.math.wmflabs.org/w/index.php?title=ക്രമഗുണിതം&oldid=165" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്