കർണ്ണം (ഗണിതശാസ്ത്രം)
ഫലകം:Prettyurl ഫലകം:ToDisambig ഫലകം:ആധികാരികത

ഒരു മട്ടത്രികോണത്തിന്റെ ഏറ്റവും നീളം കൂടിയ വശമാണ് കർണ്ണം. ഈ വശം മട്ടകോണിനെതിരേ കിടക്കുന്നതാണ്. Hypotenuse എന്ന പദം ഗ്രീക് ഭാഷയിൽനിന്നുമാണ് ഉത്ഭവിച്ചത്.
കർണ്ണത്തിന്റെ നീളം കണ്ടുപിടിക്കുന്നതിന് പൈത്തഗോറസ് സിദ്ധാന്തം ഉപയോഗിക്കുന്നു. ഈ സിദ്ധാന്തപ്രകാരം കർണ്ണത്തിന്റെ വർഗ്ഗം മറ്റുരണ്ടുവശങ്ങളുടെ വർഗ്ഗത്തിന്റെ തുകക്ക് തുല്യമായിരിക്കും. പൈത്തഗോറിയൻ നിയമമുപയോഗിച്ച് കർണ്ണാത്തിന്റെ നീളം കണ്ടുപിടിയ്ക്കാം. ഇവ യഥാക്രമം ഒരു മട്ടത്രികോണത്തിന്റെ പാദം,ലംബം എന്നിവയും കർണ്ണവുമാണെങ്കിൽ പൈത്തഗോറിയൻ സിദ്ധാന്തപ്രകാരം ആണ്. അതായത്, പാദത്തിന്റെ വർഗ്ഗത്തോട് ലംബത്തിന്റെ വർഗ്ഗം കൂട്ടിയാൽ കർണ്ണവർഗ്ഗം ലഭിക്കുന്നു. രണ്ട് ത്രികോണങ്ങൾ യോജിപ്പിച്ചാലുണ്ടാകുന്ന ചതുർഭുജത്തിന്റെ വികർണ്ണം, ത്രികോണങ്ങളുടെ കർണ്ണമായിരിയ്ക്കും.
ഉദാഹരണത്തിന് രണ്ട് ലംബവശങ്ങൾ 3 മീ, 4 മീ ഇവയാണ്.ഇവയുടെ വർഗ്ഗങ്ങൾ യഥാക്രമം 9 ച.മീ, 16 ച.മീ ആണ്. പൈത്തഗോറസ് സിദ്ധാന്തപ്രകാരം കർണ്ണത്തിന്റെ വർഗ്ഗം 25 ച.മീഉം ആയതിനാൽ കർണ്ണം 5 മീഉം ആണ്. ഫലകം:Geometry-stub
de:Rechtwinkliges Dreieck#Hypotenuse vi:Tam giác#Phân loại tam giác