കർണ്ണം (ഗണിതശാസ്ത്രം)

testwiki സംരംഭത്തിൽ നിന്ന്
വഴികാട്ടികളിലേക്ക് പോവുക തിരച്ചിലിലേക്ക് പോവുക

ഫലകം:Prettyurl ഫലകം:ToDisambig ഫലകം:ആധികാരികത

കർണ്ണം hഉം പാദവും ലംബവുംc1 ഉംc2 ആയ ഒരു മട്ടത്രികോണം

ഒരു മട്ടത്രികോണത്തിന്റെ ഏറ്റവും നീളം കൂടിയ വശമാണ് കർണ്ണം. ഈ വശം മട്ടകോണിനെതിരേ കിടക്കുന്നതാണ്. Hypotenuse എന്ന പദം ഗ്രീക് ഭാഷയിൽ‌നിന്നുമാണ് ഉത്ഭവിച്ചത്.

കർണ്ണത്തിന്റെ നീളം കണ്ടുപിടിക്കുന്നതിന് പൈത്തഗോറസ് സിദ്ധാന്തം ഉപയോഗിക്കുന്നു. ഈ സിദ്ധാന്തപ്രകാരം കർണ്ണത്തിന്റെ വർഗ്ഗം മറ്റുരണ്ടുവശങ്ങളുടെ വർഗ്ഗത്തിന്റെ തുകക്ക് തുല്യമായിരിക്കും. പൈത്തഗോറിയൻ നിയമമുപയോഗിച്ച് കർ‌ണ്ണാത്തിന്റെ നീളം കണ്ടുപിടിയ്ക്കാം. a,b ഇവ യഥാക്രമം ഒരു മട്ടത്രികോണത്തിന്റെ പാദം,ലംബം എന്നിവയും c കർണ്ണവുമാണെങ്കിൽ പൈത്തഗോറിയൻ സിദ്ധാന്തപ്രകാരം a2+b2=c2 ആണ്‌. അതായത്, പാദത്തിന്റെ വർ‌ഗ്ഗത്തോട് ലംബത്തിന്റെ വർ‌ഗ്ഗം കൂട്ടിയാൽ കർ‌ണ്ണവർ‌ഗ്ഗം ലഭിക്കുന്നു. രണ്ട് ത്രികോണങ്ങൾ യോജിപ്പിച്ചാലുണ്ടാകുന്ന ചതുർ‌ഭുജത്തിന്റെ വികർ‌ണ്ണം, ത്രികോണങ്ങളുടെ കർ‌ണ്ണമായിരിയ്ക്കും.

ഉദാഹരണത്തിന് രണ്ട് ലംബവശങ്ങൾ 3 മീ, 4 മീ ഇവയാണ്.ഇവയുടെ വർഗ്ഗങ്ങൾ യഥാക്രമം 9 ച.മീ, 16 ച.മീ ആണ്. പൈത്തഗോറസ് സിദ്ധാന്തപ്രകാരം കർണ്ണത്തിന്റെ വർഗ്ഗം 25 ച.മീഉം ആയതിനാൽ കർണ്ണം 5 മീഉം ആണ്. ഫലകം:Geometry-stub

de:Rechtwinkliges Dreieck#Hypotenuse vi:Tam giác#Phân loại tam giác